Cho phương trình \(\left(x^2+ax+1\right)^2+a\left(x^2+ax+1\right)+1=0\) với a là tham số. Khi phương trình có nghiệm thực duy nhất, cmr a > 2
Cho tam thức f(x) = \(2x^2-3x+1\) . Trong các khẳng định sau , khẳng định nào đúng ?
A,f(x) > 0 với \(\forall x\in\left(\dfrac{1}{2};1\right)\)
B,\(f\left(x\right)>0\) với \(\forall x\in\left(-\infty;1\right)\)
C, f(x) < 0 với \(\forall x\in\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
D,f(x) >0 với \(\forall x\in\left(-\infty;\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\)
Biểu thức \(P=\dfrac{\left(1-tan^2x\right)^2}{4tan^2x}-\dfrac{1}{4sin^2xcos^2x}\) có giá trị không phụ thuộc biến \(x\). Khi đó phương trình ẩn \(y\) sau đây có bn nghiệm dương: \(y^2-3y+P=0\)
Bất đẳng thức nào sau đây luôn đúng với giá trị của biến, giải thích
A. \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2+b^2+c^2\right)\)
B. \(a^2+b^2\ge3ab\)
C. \(x^3+y^3+1\ge3xy\)
D. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
Để bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng \(\forall x\in\left[-5;3\right]\) tham số a phải thỏa mãn đk?
Bất phương trình \(\dfrac{2x^2-x-1}{\left|x+1\right|-2x}\le-2x^2+x+1\) có bao nhiêu nghiệm nguyên?
Cho nhị thức bậc nhất f(x) = 4-2x. Trong các khẳng định sau , khẳng định nào đúng ?
\(A,f\left(x\right)>0với\forall x\in\left(-\infty;2\right)\)
\(B,f\left(x\right)>0với\forall x\in(-\infty;-2]\)
C,\(f\left(x\right)>0với\forall x\in\left(2;+\infty\right)\)
\(D,f\left(x\right)< 0với\forall x\in\left(-\infty;2\right)\)
Giải bất phương trình
a) \(\left|x+1\right|-\left|x-2\right|\ge3\)
b) \(\dfrac{1}{\left|x\right|-3}-\dfrac{1}{2}< 0\)
Giải các bất phương trình sau:
\(a,\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
\(b,4\sqrt{x}+\dfrac{2}{\sqrt{x}}< 2x+\dfrac{1}{2x}+2\)