Tìm A,B,C
A/2=B/3,B/5=C/4 và A-B C
tìm các số hữu tỉ a,b,c biết :
1) ab=2 ;bc=3 ;ca =54
2) ab=5/3,bc=4/5,ca=3/4
3)
a(a+b+c)=-12
b(a+b+c)=18
c(a+b+c)=30
1) ab=2 (I); bc=3 (II); ca=54 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18
(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9
2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1
(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5
3) a(a+b+c)= -12 (I)
b(a+b+c)= 18 (II)
c(a+b+c)= 30 (III)
Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6
TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5
TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5
A) Tìm a,b,c
a= b/2=c/3 và 4a - 3b +2c= 36
B) tìm x,y,z
x/2=y/3,y/5=z/4 và x-y+z= -49
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{4a-3b+2c}{4-6+6}=\dfrac{36}{4}=9\\ \Rightarrow\left\{{}\begin{matrix}a=9\\b=18\\c=27\end{matrix}\right.\\ \dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{16}=\dfrac{x-y+z}{10-15+16}=\dfrac{-49}{11}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{490}{11}\\y=-\dfrac{735}{11}\\z=-\dfrac{784}{11}\end{matrix}\right.\)
3) Tìm a, b, c, biết:
a) ab = 3/5; be = 4/5; ca = 3/4
b) a.( a + b + c) = 18; b.( a + b + c) = -12; c.( a + b + c) = 30
a: \(\left(abc\right)^2=\dfrac{3}{5}\cdot\dfrac{4}{5}\cdot\dfrac{3}{4}=\dfrac{9}{25}\)
Trường hợp 1: \(abc=\dfrac{3}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\end{matrix}\right.\)
Trường hợp 2: \(abc=\dfrac{-3}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\b=\dfrac{3}{5}:\dfrac{-3}{4}=\dfrac{-4}{5}\\a=\dfrac{3}{5}:\dfrac{-4}{5}=\dfrac{-3}{4}\end{matrix}\right.\)
Tìm các só hữu tỉ a,b,c, biết rằng:
a) ab=3/5, bc=4/5, ca=3/4
b) a(a+b+c)=-12; b(a+b+c)=18; c(a+b+c)=30
a. ab=3/5;bc=4/5;ca=3/4
=>(abc)^2=9/25
=>abc=3/5
=> c=1;a=3/4;b=4/5
b. a(a+b+c)=-12; b(a+b+c)=18; c(a+b+c)=30
=>(a+b+c)^2=36
=>a+b+c=6
=> a=-2;b=3;c=5
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)
=> \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)
=> \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)
Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)
Có: \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)
<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(x^2+y^2+z^2\ge xy+yz+zx\)
Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)
Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)
1. So sánh các số a, b và c, biết rằng a/b = b/c = c/a.
2. Tìm các số a, b, c, d, biết rằng:
a : b : c : d = 2 : 3 : 4 : 5 và a + b + c + d = -42.
3. Tìm các số a, b, c, biết rằng:
a/2 = b/3 , b/5 = c/4 và a - b + c = -49.
4. Tìm các số a, b, c, biết rằng:
a/2 = b/3 = c/4 và a + 2b - 3c = -20.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Bài 2:
a : b : c : d = 2 : 3 : 4 : 5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Với \(\frac{a}{2}=-3\Rightarrow a=-6\)
Với \(\frac{b}{3}=-6\Rightarrow b=-18\)
Với \(\frac{c}{4}=-6\Rightarrow c=-24\)
Với \(\frac{d}{5}=-6\Rightarrow d=-30\)
Tìm các số hữu tỉ a,b,c, biết rằng:
a) ab=3/5, bc=4/5,ca=3/4
b)a(a+b+c)=-12; b(a+b+c)=18; c(a+b+c)=30
c)ab=c, bc=4a, ac=9b