Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoai Bao Tran
Xem chi tiết
Hùng Nguyễn
26 tháng 2 2018 lúc 15:42

a,b,c đều = 1

vì theo đề bài a,b,c là số dương mà a2 + b2 + c2 + abc =4 vậy nên a,b,c là 1 số cực nhỏ để khi bình phương lên nó có thể cộng với các hạng tử còn lại hơn nữa khi chúng nhân với nhau thì ko đc vượt quá 1 để có thể cộng với a2
b2, c2 để bằng 4
tìm đc a,b,c đều bằng 1 rồi thay vào ab+bc+ca-abc < hoặc bằng 2 là chứng minh đc. Chúc bạn may mắn

Unruly Kid
26 tháng 2 2018 lúc 18:57

Cho xin slot bài này :v oaoa

Unruly Kid
26 tháng 2 2018 lúc 19:18

Trong 3 số a,b,c luôn tồn tại ít nhất 2 số mà hiệu của chúng trừ cho 1 đều cùng dấu. Không mất tính tổng quát, giả sử là a và b. Vậy:

\(c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow abc\ge ac+bc-c\)

Theo AM-GM, ta có:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Rightarrow ab\le2-c\)

Vậy ta có: \(ab+bc+ca-abc\le2-c+bc+ca-\left(ac+bc-c\right)\le2\)

:3 Còn có cách đặt ẩn phụ rồi dùng AM-GM dễ hiểu oaoa

Ngọc Hạnh Nguyễn
Xem chi tiết
gianght
Xem chi tiết
lý canh hy
Xem chi tiết
alibaba nguyễn
4 tháng 10 2018 lúc 10:12

Dựa vào điều kiện xuy ra được trong 3 xô: \(\left(1-a\right);\left(1-b\right);\left(1-c\right)\)co 2 xô cùng dâu. Giả xư đo là \(\left(1-a\right);\left(1-b\right)\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\)

Ta lại co:

\(4=a^2+b^2+c^2+abc\ge c^2+2ab+abc\)

\(\Leftrightarrow ab\left(2+c\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Quay lại bài toan ta co:

\(ab+bc+ca-abc\le2+\text{​​}\left(bc+ca-abc-c\right)=2-c\left(1-a\right)\left(1-b\right)\le2\)

Hoàng Tống Nguyên Anh
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
23 tháng 8 2017 lúc 15:00

bđt phụ sai mà cũng ko đc chuẩn hóa

Witch Rose
23 tháng 8 2017 lúc 18:38

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

Thắng Nguyễn
23 tháng 8 2017 lúc 19:40

SOS cho khỏe :v 

WLOG \(a\ge b\ge c\)

Áp dụng BĐT AM-GM ta có:

\(b^2Σ_{cyc}\left(a^3+\frac{4ab}{a^2+b^2}-3\right)=b^2\left(Σ_{cyc}(a^3-abc)-2Σ_{cyc}\left(1-\frac{2ab}{a^2+b^2}\right)\right)\)

\(=b^2Σ_{cyc}(a-b)^2\left(\frac{a+b+c}{2}-\frac{2}{a^2+b^2}\right)=\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)(a^2+b^2)-4abc)}{a^2+b^2}\)

\(\ge\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)2ab-4abc)}{a^2+b^2}=b^2Σ_{cyc}\frac{(a-b)^2ab(a+b-c)}{a^2+b^2}\)

\(\ge\frac{b^2(a-c)^2ac(a+c-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b+c-a)}{b^2+c^2}\)

\(\ge\frac{a^2(b-c)^2ac(a-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b-a)}{b^2+c^2}\)

\(=\frac{abc^3(a+b)(b-c)^2(a-b)^2}{(a^2+c^2)(b^2+c^2)}\ge0\) (đúng :v)

Đinh Đức Hùng
Xem chi tiết
i love you
23 tháng 1 2018 lúc 15:29

dự đoán của chúa Pain a=b=c=1

ta có   \(ab^2\le\frac{\left(a+B^2\right)^2}{4}:bc^2\le\frac{\left(b+c^2\right)^2}{4}:ca^2\le\frac{\left(c+a^2\right)^2}{4}.\)

\(ab^2+bc^2+ca^2\le\frac{\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+c^2\right)}{4}\)

\(ab^2+bc^2+ca^2\le\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(ab+bc+ca\right)\)

ta có  \(xy+yz+zx\le x^2+y^2+z^2\left(cosi\right)\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2=3\)luôn đúng 

thay số ta được \(ab^2+bc^2+ca^2\le\frac{3}{2}+\frac{3}{2}=3\)

\(ab^2+bc^2+ca^2-abc\le3-abc\)

có  \(abc\ge\frac{\left(a+b+c\right)^3}{27}..."-abc"\ge\rightarrow\le\) ( -abc dấu > thành dấu < cùng dấu thay vào được )

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(a+b+C\right)^3}{27}\)

ta có \(a^2+1\ge2a\left(cosi\right)\)

        \(b^2+1\ge2b\)

       \(c^2+1\ge2c\)

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

có (a^2+b^2+c^2)=3 (gt)   \(\Rightarrow3+3\ge2\left(a+b+C\right)\Rightarrow3\ge a+b+C\Rightarrow-3\le-\left(a+b+c\right)\)

cùng dấu < thay vào ta được

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(3\right)^3}{27}=3-1=2\)

\(\Rightarrow ab^2+bc^2+ca^2-abc\le2\)

cho chúa Pain xin cái tính :)

Trần
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 20:33

Hỏi đáp Toán

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 20:34

Hình như đề bài có vấn đề : thừa đk ab + bc + ac  = abc

ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\) 

Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)

 

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 20:35

Nếu thay dấu > thành >= thì ta có cách giải khác

Trần Dương An
Xem chi tiết