Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Dat Tran
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Ngọc Hạnh Nguyễn
Xem chi tiết
Thức Vương
24 tháng 2 2018 lúc 19:19

\(\Leftrightarrow Bx^2+Bx+B=x^2-x+1\)

\(\Leftrightarrow x^2\left(B-1\right)+x\left(B+1\right)+B-1=0\)

\(TH1:B=1\Rightarrow x=0\left(1\right)\)

\(TH2:B\ne1\)

\(\Delta=b^2-4ac=\left(B+1\right)^2-4\left(B-1\right)^2=-3B^2+10B-3\)

Để PT trên có nghiệm thì denta >=0

\(\Leftrightarrow-3B^2+10B-3\ge0\)

\(\Leftrightarrow\frac{1}{3}\le B\le3\left(2\right)\)

Từ (1) và (2) => * GTLN của B là 3

                          khi: x = -1 (Bạn tự tìm nha)

                           * GTNN của B là 1/3

                          khi: x = 1 (Bạn tự tìm luôn) 

                 ..................... HẾT .......................... 

Pain Thiên Đạo
24 tháng 2 2018 lúc 19:10

\(P=\frac{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge1.\)

Oi NHa
Xem chi tiết
Diệu Vy
30 tháng 12 2016 lúc 15:18

mấy bài như này hình như dùng miền giá trị được đó bạn

hộ mik nhé

tks bạn

An Vy
Xem chi tiết
Pham Thi Thanh Thuy
Xem chi tiết
CANBIS SUB CHANNEL
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 17:37
TÌM MIN : 

Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x^2+2x+1\right)+\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)

Vậy Min = \(\frac{1}{3}\Leftrightarrow x=-1\)

TÌM MAX : 

Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{-2\left(x^2-2x+1\right)+3\left(x^2-x+1\right)}{x^2-x+1}=\frac{-2\left(x-1\right)^2}{x^2-x+1}+3\le3\)

Vậy Max = 3  <=> x = 1

Hương Giang Lê
Xem chi tiết
Đàm Thảo Anh
Xem chi tiết
Akai Haruma
25 tháng 7 2020 lúc 13:42

Lời giải:

ĐK: $x\in\mathbb{R}$

$A=\frac{x^2+x+1}{x^2+1}=1+\frac{x}{x^2+1}$

$2A=2+\frac{2x}{x^2+1}=1+\frac{(x+1)^2}{x^2+1}$

Vì $(x+1)^2\geq 0; x^2+1>0$ với mọi $x$ nên $\frac{(x+1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\geq 1$

$\Rightarrow A\geq \frac{1}{2}$. Vậy $A_{\min}=\frac{1}{2}$ khi $x=-1$

Mặt khác:

$2A=2+\frac{2x}{x^2+1}=3-(1-\frac{2x}{x^2+1})=3-\frac{(x-1)^2}{x^2+1}$

Lập luận tương tự ở trên ta cũng có $\frac{(x-1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\leq 3\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$ khi $x=1$