Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
5 tháng 7 2017 lúc 8:33

Trường hợp đồng dạng thứ ba

Vu Kim Ngan
15 tháng 3 2018 lúc 22:17

a) BE // DC => ∆BEF ∽ ∆CDF

AD // BF => ∆ADE ∽ ∆BFE.

Do đó: ∆ADE ∽ ∆CFD

b) BE = AB - AE = 12 - 8 = 4cm

∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)

=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)

=> BF = 3,5 cm.

EF = 5 cm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 12 2019 lúc 7:09

Giải bài 33 trang 77 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giả sử ΔA’B’C’ Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số k

Giải bài 33 trang 77 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi D, D’ lần lượt là trung điểm BC và B’C’

Giải bài 33 trang 77 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ ΔA’B’D’ Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABD theo tỉ số k.

Giải bài 33 trang 77 SGK Toán 8 Tập 2 | Giải toán lớp 8

Sách Giáo Khoa
Xem chi tiết
Lưu Hạ Vy
22 tháng 4 2017 lúc 15:12

Giải bài 33 trang 77 SGK Toán 8 Tập 2 | Giải toán lớp 8

Lưu Hạ Vy
22 tháng 4 2017 lúc 15:13

Giải bài 33 trang 77 SGK Toán 8 Tập 2 | Giải toán lớp 8

Quý Thiện Nguyễn
Xem chi tiết
F.C
16 tháng 3 2017 lúc 10:04

3
A C B H Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)

Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\)

Xét tam giác A'B'H' và tam giác ABH có:

góc A'H'B' = góc ABH (=90o)

góc A'B'H'= góc ABH (vì tam giác ABC đồng dạng với tam giác A'B'C')

Nên tam giác A'B'H' đồng dạng với tam giác ABH (g.g)

Do vậy \(\dfrac{A'H'}{AH}=\dfrac{A'B'}{AB}=k\)

2/

A B C M

Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)

Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\) (1)

\(\)góc B'A'M' = góc BAM \(\left(=\dfrac{1}{2}B'A'C'=\dfrac{1}{2}BAC\right)\) (2)

Xét tam giác A'B'M' và tam giác ABC có:

góc B'A'M' = góc BAM (từ 2)

góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')

Nên tam giác A'B'M' đồng dạng với tam giác ABM (g.g)

Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\) (từ 1)

3/


A B C M

Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)

Nên \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{\dfrac{B'C'}{2}}{\dfrac{BC}{2}}=\dfrac{B'M'}{BM}\) (1)

Xét tam giác A'B'M' và tam giác ABM có:

\(\dfrac{A'B'}{AB}=\dfrac{B'M'}{BM}\) (từ 1)

góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')

Nên tam giác A'B'M' đồng dạng với tam giác ABM (c.g.c)

Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\)

Vân Đoàn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2023 lúc 23:36

a: ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF=k và góc B=góc E; góc BAC=góc EDF; góc C=góc F

=>AB/DE=BM/EN

mà gó B=E

nên ΔABM đồng dạng vơi ΔDEN

=>AM/DN=AB/DE=k

b: góc A=góc D

=>góc BAM=góc EDN

Xét ΔABM và ΔDEN có

góc BAM=góc EDN

góc ABM=góc DEN

=>ΔABM đồng dạng với ΔDEN

=>AM/EN=AB/DE=k

c: Xét ΔABM vuông tại M và ΔDEN vuông tại N có

góc B=góc E

=>ΔABM đồng dạng với ΔDEN

=>AM/EN=AB/DE=k

d: AB/DE=AC/DF=BC/EF=k

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=\dfrac{AB+AC+BC}{DE+DF+EF}=\dfrac{DE\cdot k+DF\cdot k+EF\cdot k}{DE+DF+EF}=k\)

=>ĐPCM

 

Nguyễn Xuân Nhã Thi
Xem chi tiết
nguyễn thị dương
8 tháng 3 2018 lúc 20:31

do hai tam giác đồng dạng nên các góc trong 2 tam giác ứng vs nhau thì bằng nhau

xét hai tam giác nhỏ có đg trung trực hai tam giác có đg trung trực bằng nhau

tỉ số hai tam giác nhỏ bàng tỉ số 2 tam giác lớn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 11 2018 lúc 9:30

Giải bài 35 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.

Giải bài 35 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:

Giải bài 35 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2019 lúc 10:32

Giải bài 35 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.

Giải bài 35 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:

Giải bài 35 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Sách Giáo Khoa
Xem chi tiết
Lưu Hạ Vy
22 tháng 4 2017 lúc 15:08
Xét \(\Delta\)A’B’D’ và \(\Delta\)ABD có: Góc \(\widehat{B}=\widehat{B'}\) \(\widehat{BAD}=\widehat{B'A'D}\) => \(\Delta\)’B’D’ ∽ \(\Delta\)ABD theo tỉ số K = \(\dfrac{A'B'}{AB}=\dfrac{A'D'}{AD}\)\(\Delta\)A’B’C’ ∽ \(\Delta\)ABC theo tỉ số \(\dfrac{A'B'}{AB}\) \(\Rightarrow\dfrac{A'D'}{AD}=k\)
Hồng Quang
27 tháng 3 2018 lúc 21:21

Hỏi đáp Toán