Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC. Chứng ming
MN//BC
MN=1/2BC
Cho Tam giác ABC , M là trung điểm cảu AB , N là trung điểm của AC .CMR :
a . MN song song vs BC
b. MN = 1/2BC
Cho tam giác ABC. M là trung điểm của AB, từ M kẻ đường thẳng song song với BC cắt AC tại N, từ N kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh: BM = NI, N là trung điểm của AC, I là trung điểm của BC, MN = 1/2BC
(Tự vẽ hình)
Do BM//NI, MN//BI nên MNIB là hình bình hành
=> BM=IN (2 cạnh đối) (1)
Trong tam giác ABC, do M trung điểm AB, MN//BC => N trung điểm AC (2)
Do MA=MB,NA=NC nên MN là đường trung bình tam giác ABC => MN=1/2 BC (4)
CMTT, ta có I trung điểm BC (3)
Vậy ta có tất cả đpcm
Hình:
cho tam giác ABC. Gọi M,N lần lượt là trung điểm của các cạnh AB, AC. CMR: MN//BC, MN=1/2BC
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
cho tam giác ABC . M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Vẽ thêm D sao cho N là trung điểm của đoạn thẳng MD. chứng minh:
a) MD=CD và MB // CD
b) MN // BC và MN = 1/2BC
giúp mk với (huhu)
Bạn tham khảo link này nha :
hoidap247.com/cau-hoi/217334
Tham khảo nha :>
đây là toán lớp 7
giải theo lớp 7 bn à
Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC. Chứng minh MN song song BC, MN = 1/2 BC
Cho tam giác ABC , M là trung điểm của Ab , N là trung điểm của Ac . Trên tia MN lấy điểm P sao cho N là trung điểm của MP
a/ Chứng minh MB=CP
b/ Chứng minh tam giác BMC = tam giác PCM
c/ Chứng minh MN//BC và MN = 1/2 BC
Lớp 7
a) Xét \(\Delta\)AMN và \(\Delta\)CPNcó:
AN = NC )gt)
\(\widehat{ANM}=\widehat{PNC}\) (đối đỉnh)
MN = NP (gt)
=> \(\Delta\)AMN= \(\Delta\) CPN (c.g.c)
=> AM = CP hay BM = CP
b) Vì \(\Delta\)AMN= \(\Delta\) CPN
=> \(\widehat{MAN}=\widehat{NCP}\)
=> AM // CP
=> \(\widehat{BMC}=\widehat{MCP}\) (so le trong)
Xét \(\Delta\)BMC và \(\Delta\) PCM có:
BM = PC
\(\widehat{BMC}=\widehat{MCP}\)
CM:chung
=> \(\Delta BMC=\Delta PCM\left(c.g.c\right)\) (1)
c) từ b => MP = BC
=> 2MN= BC
hay \(MN=\dfrac{1}{2}BC\)
(1) => \(\widehat{MCB}=\widehat{PMC}\) => MN//BC
Cho tam giác ABC .M là trung điểm của AB , N là trung điểm của AC. Chứng minh MN song song với BC; MN = 1/2. BC
Cho tam giác ABC vuông tại A có AC = 1/2BC. Trên cạnh AC lấy điểm N, trên cạnh BC lấy điểm M sao cho CN = BM. Gọi I là trung điểm của MN. Chứng minh đường trung tuyến kẻ từ A của tam giác ABC đi qua điểm I
cho tam giác ABC , M là trung điểm của AB . N là trung điểm của AC . Vẽ điểm D sao cho N là trung điểm của MD . CMR :
a) MD//CD và MB=CD
b) MN//BC và MN=1/2BC
câu b nha