tam giác ABC cân tại A,BC=120cm,AB=100cm.Các đường cao AD và BE gặp nhau ở H.
a)Tìm các tam giác đồng dạng với tam giác BDH
b)Tính độ dài HD,BH
c)Tính độ dài HE
Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.
a).Tìm các tam giác đồng dạng với tam giác BDH.
b).Tính độ dài HD, BH
c).Tính độ dài HE
Nho ghi cach lam nha (neu duoc thi ve hinh)Minh tick dung cho
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
Cho tam giác ABC cân ở A có AB = AC = 100cm . BC = 120cm , hai đường cao AD , BE cắt nhau tại H A/ tìm tam giác đồng dạng với tam giác BDH B/ tính độ dài HD,AH,BH,HE
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
cho tam giác ABC cân tại A, AB=AC=100cm, BC=120cm. Các đường cao AD và BE cắt nhau ở H. Tìm các tam giác đồng dạng với tam giác BDH, tính độ dài HD,BH,HE
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
Cho tam giác ABC cân ở A có AB = AC = 100cm . BC = 120cm , hai đường cao AD , BE cắt nhau tại H
A/ tìm tam giác đồng dạng với tam giác BDH
B/ tính độ dài HD,AH,BH,HE
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
Tam giác ABC cân tại A , BC = 120 cm , AB = 100 cm . Các đường cao AD và BE gặp nhau ở H
a) Tìm các tam giác đồng dạng với tam giác BDH
b) Tính độ dài HD , BH
c) Tính độ dài HE
2/Tam giác ABC cân tại A, BC=120cm, AB = 100cm. Các đường cao AD và BE gặp nhau ở H.
b,Tính độ dài HD, BH
c,TÍnh độ dài HE.
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
Cho tan giác ABC cân tại A, BC=120cm, AB=100cm. Các đường cao AD và BE gặp nhau tại H. a) Tìm tâm giác đồng dạng với tâm giác BDH. b)Tính HD, BH. c) Tính HE
TK
a) Các tam giác đồng dạng với tam giác BDH là:
tam giác AEH (g-g)
tam giác BEC (g-g)
tam giác ADC (g-g)
tam giác ADB (vì tam giác ADB bằng tam giác ADC)
b) Xét tam giác ABC cân tại A, có:
AD là đường cao
=> AD là đường trung tuyến
=> DB = DC = BC/2 = 120/2 = 60(cm)
Áp dụng định lý Pytago vào tam giác ACD vuông tại D, có:
AC2 = AD2 + CD2
AD = 80(cm)
Xét tam giác ABC, có:
AD là đường cao (gt)
BE là đường cao (gt)
AD cắt BE tại H (gt)
=> H là trực tâm
=> HD = 1/3AD = 1/3*80 = 80/3(cm)
Áp dụng định lý Pytago vào tam giác BHD vuông tại D, có:
BH2 = BD2 + HD2
BH = 5,7(cm)
cho tam giác ABC cân tại A, AB=AC=100cm, BC=120cm,các đường cao AD và BE cắt nhau tại H
tìm tg đồng dang với tam giác BHD
tính độ dài HE
tính độ HD, BH
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.
a) Tìm các tam giác đồng dạng với tam giác BDH.
b).Tính độ dài HD, BH
c).Tính độ dài HE
Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:
a) BH.BD = BK.BC
b)CH.CE = CK.CB
c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.
Bài 8 : Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:
a) Tam giác BFM đồng dạng với tam giác CEM.
b) Tam giác BHC và tam giác CEM đồng dạng.
c) ME + MF không đổi khi M di động trên BC.
Bài 9: Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm ; BC = 20 cm ; AA’ = 15cm.
a) Tính thể tích hình hộp chữ nhật.
b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.
Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.
Tính : a) Đường chéo AC
b) Tính đường cao SO và thể tích hình chóp.
CHo tam giác ABC cân tại A, AB = AC = 100 cm, BC = 120cm, các đường cao AD và BE cắt nhau tại H
a/ Tìm các tam giác đồng dạng với tai giác DBH
b/ Tính độ dài HD, BH
c/ Tính tỉ số diện tích của tam giác DBH và tam giác EAH
giúp với mọi người, cảm ơn trước nha