Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Em Không Biết
Xem chi tiết
Akai Haruma
30 tháng 7 2023 lúc 16:33

Lời giải:
Theo bài ra ta có:

$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$

$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$

Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$

$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:

$3x^2-y^2+z^2=876$

$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$

$\Rightarrow 219k^2=876$

$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$

Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$

Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$

Phạm thị ngà
Xem chi tiết

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)

Phan van anh
Xem chi tiết
Edogawa Conan
1 tháng 10 2019 lúc 14:45

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

Edogawa Conan
1 tháng 10 2019 lúc 14:49

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...

tuấn lê
Xem chi tiết
Dang Khoa ~xh
6 tháng 10 2021 lúc 20:27

Áp dụng t/c DTSBN:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=2\Rightarrow x=2.2=4\\\dfrac{y}{4}=2\Rightarrow y=4.2=8\\\dfrac{z}{6}=2\Rightarrow z=6.2=12\end{matrix}\right.\)

Minh Hiếu
6 tháng 10 2021 lúc 20:27

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+8}=\dfrac{8}{6}=\dfrac{4}{3}\)

\(\left\{{}\begin{matrix}x=\dfrac{4}{3}.2=\dfrac{8}{3}\\y=\dfrac{4}{3}.4=\dfrac{16}{3}\\z=\dfrac{4}{3}.6=8\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
6 tháng 10 2021 lúc 21:37

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

Do đó: x=4; y=8; z=12

Phạm Danh Khoa
Xem chi tiết
nguyen yen nhi
7 tháng 10 2016 lúc 20:02

a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10

biến đổi: 
\(\frac{x}{19}=\frac{5x}{95}\)

=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)

(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)

= \(\frac{5x-y-z}{95-5-95}\)

= \(\frac{-10}{-5}=2\)

* \(\frac{x}{19}=2\)=> \(x=19.2=38\)

* \(\frac{y}{5}=2\)=> \(y=2.5=10\)

* \(\frac{z}{95}=2\)=> \(z=95.2=190\)

nguyen yen nhi
7 tháng 10 2016 lúc 20:06

nè Khoa ơi câu b có đề ko zợ?

Hồ Thị Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 12:45

1:

a: \(=\dfrac{-4}{7}+\dfrac{4}{7}+\dfrac{3}{7}-\dfrac{23}{34}-\dfrac{4}{5}=\dfrac{3}{7}-\dfrac{23}{34}-\dfrac{4}{5}=-\dfrac{1247}{1190}\)

b:

Sửa đề: \(\dfrac{-5}{13}+\dfrac{4}{19}+\dfrac{-8}{13}+\dfrac{15}{19}+\dfrac{45}{6}\) 

\(=\dfrac{-5}{13}-\dfrac{8}{13}+\dfrac{4}{19}+\dfrac{15}{19}+\dfrac{45}{6}=\dfrac{9}{2}\)

 

Minh Thư
Xem chi tiết
Phạm Thị Thùy Linh
29 tháng 6 2019 lúc 11:47

\(3x+xy-y=5\)

\(\Rightarrow3x+xy-y-3=5-3\)

\(\Rightarrow x\left(3+y\right)-\left(3+y\right)=2\)

\(\Rightarrow\left(y+3\right)\left(x-1\right)=2\)

Mà \(Ư_2=\left\{\pm1;\pm2\right\}\)

TH1 : \(\hept{\begin{cases}y+3=1\\x-1=2\end{cases}\Rightarrow\hept{\begin{cases}y=-2\\x=3\end{cases}}}\)

Th2 : \(\hept{\begin{cases}y+3=-1\\x-1=-2\end{cases}\Rightarrow\hept{\begin{cases}y=-4\\x=-1\end{cases}}}\)

TH3 : \(\hept{\begin{cases}y+3=2\\x-1=1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}}\)

TH4 : \(\hept{\begin{cases}y+3=-2\\x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-5\\x=0\end{cases}}}\)

KL...

Minh Thư
30 tháng 6 2019 lúc 8:39

Phạm Thị Thùy Linh cám ơn bạn lắm lắm...))

Haei
Xem chi tiết

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)

Huyền
Xem chi tiết
QuocDat
1 tháng 10 2017 lúc 14:07

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)

\(\frac{x}{10}=2\Rightarrow x=2.10=20\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{21}=2\Rightarrow z=2.21=42\)

Vậy x=20 ; y=30 và z=42

zZz Bố Đời zZz
2 tháng 9 2018 lúc 14:18

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405