Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Thủy Vũ
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2021 lúc 16:53

\(f\left(0\right)=c⋮3\) ;

 \(f\left(1\right)=a+b+c⋮3\) mà \(c⋮3\Rightarrow a+b⋮3\)

\(f\left(-1\right)=a-b+c=-2b+\left(a+b+c\right)⋮3\)  mà \(a+b+c⋮3\Rightarrow-2b⋮3\Rightarrow b⋮3\) (do 2 và 3 nguyên tố cùng nhau)

\(\left\{{}\begin{matrix}a+b+c⋮3\\b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow a⋮3\)

Anime forever
Xem chi tiết
uzumaki naruto
Xem chi tiết
uzumaki naruto
Xem chi tiết
👾thuii
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 13:50

Bài 4:

\(f\left(5\right)-f\left(4\right)=2019\)

=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)

=>\(61a+9b+21c=2019\)

\(f\left(7\right)-f\left(2\right)\)

\(=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c\)

\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số

Trung Dũng Đoàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 1:13

đề sai rồi bạn

Bùi Hoàng Tuấn Kiệt
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
3 tháng 8 2021 lúc 14:57

Ta có : $f(-2) = 4a-2b+c$

$f(3) = 9a + 3x + c$

$\to f(-2) + f(3) = 13a+b+2c= 0$

$\to f(-2) = -f(3)$

$\to f(-2).f(3) = -[f(3)]^2$ \(\le\) $ 0 $

Do đó phát biểu $A$ đúng.

Lê Hoàng Anh Tuấn
Xem chi tiết
Dương Thúy Hiền
Xem chi tiết
alibaba nguyễn
10 tháng 11 2016 lúc 20:37

Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có

\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)

Ta lấy (3) - 2(2) + (1) vế theo vế ta được

2a = p - 2n + m

=> 2a là số nguyên

Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được

2b = 4n - p - 3m

=> 2b cũng là số nguyên