CMR: \(\frac{\sqrt{x^4+y^4}+\sqrt{x^4-y^4}}{\sqrt{x^4+y^4}-\sqrt{x^4-y^4}}-\sqrt{\frac{x^8}{y^8}-1}=\frac{x^4}{y^4}\)
\(A=\frac{8}{4+2\sqrt{x}}-\frac{2-\sqrt{x}}{4-x}\)
\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}-x\)
\(A=\frac{8}{4+2\sqrt{x}}-\frac{2-\sqrt{x}}{4-x}\)
\(=\frac{8}{2\left(2+\sqrt{x}\right)}-\frac{2-\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{4}{2+\sqrt{x}}-\frac{1}{2+\sqrt{x}}\)
\(=\frac{3}{2+\sqrt{x}}\)
\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}-x\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)-x\)
\(=x-y-x=-y\)
Cho x;y;z >0 thỏa mãn x+y+z=1. CMR:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{\left(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\right)\sqrt{xyz}+6\left(x^4+y^4+z^4\right)}{2xyz}\)
bài 5
ĐK:\(x>2,y>1\)
\(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}..\)\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)
Áp dụng AM-GM ta có:
\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\ge2\sqrt{\frac{144\sqrt{x-2}}{\sqrt{x-2}}}=24\)
\(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=4.\)
\(\Rightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge28.\)
Dấu \(=\)xảy ra khi \(\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\Leftrightarrow x=11\left(n\right).\)
\(\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\Leftrightarrow y=5\left(n\right).\)
Vậy \(x=11,y=5\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1
Khi đó Pt ⇔36√x−2 +4√x−2+4√y−1 +√y−1=28
theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24
và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4
Pt đã cho có VT>= 28 Dấu "=" xảy ra ⇔
36√x−2 =4√x−2⇔x=11
và 4√y−1 =√y−1⇔y=5
Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT
Đề bài
Cho x; y là các số thực dương. Rút gọn mỗi biểu thức sau:
\(A = \frac{{{x^{\frac{5}{4}}}y + x.{y^{\frac{5}{4}}}}}{{\sqrt[4]{x} + \sqrt[4]{y}}}\)
\(B = {\left( {\sqrt[7]{{\frac{x}{y}\sqrt[5]{{\frac{y}{x}}}}}} \right)^{\frac{{35}}{4}}}\)
\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)
\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)
Tìm x,y thỏa mãn:
\(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
ĐKXĐ: \(x\ge1\)
Ta có: \(\frac{x^2-4}{x}+4+\frac{y^2-4}{y}+4=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Lại có: \(\frac{x^2-4}{x}+4=x+\frac{4x-4}{x}\ge4\sqrt{x-1}\)
Tương tự: \(\frac{y^2-4}{y}+4\ge4\sqrt{y-1}\)
Cộng từng vế: \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8\ge4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Dấu "=" xảy ra khi: x=y=2
Vậy (x;y)=(2'2)
Tìm x,y là các số thực thỏa:
\(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
ĐKXĐ: \(x\ge1;y\ge1\)
Ta có: \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
\(\Leftrightarrow\frac{x^2-4}{x}+\frac{y^2-4}{y}=4\left[\left(\sqrt{x-1}-1\right)+\left(\sqrt{y-1}+1\right)\right]\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x+2\right)}{x}+\frac{\left(y-2\right)\left(y+2\right)}{y}=4\left(\frac{x-1-1}{\sqrt{x-1}+1}+\frac{y-1-1}{\sqrt{y-1}+1}\right)\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{x}-\frac{4}{\sqrt{x-1}+1}\right)+\left(y-2\right)\left(\frac{y+2}{y}-\frac{4}{\sqrt{y-1}+1}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\frac{x\sqrt{x-1}+2\sqrt{x-1}+2+x-4x}{x\left(\sqrt{x-1}+1\right)}+\left(y-2\right)\frac{y\sqrt{y-1}+2\sqrt{y-1}+y-4y}{y\left(\sqrt{y-1}+1\right)}=0\)
\(\Leftrightarrow\left(x-2\right)\frac{\left( x-1\right)\sqrt{x-1}+3\sqrt{x-1}-3\left(x-1\right)-1}{x\left(\sqrt{x-1}+1\right)}\)
\(+\left(y-2\right)\frac{\left(y-1\right)\sqrt{y-1}+3\sqrt{y-1}-3\left(y-1\right)-1}{y\left(\sqrt{y-1}+1\right)}=0\)
\(\Leftrightarrow\left(x-2\right)\frac{\left(\sqrt{x-1}-1\right)^3}{x\left(\sqrt{x-1}+1\right)}+\left(y-2\right)\frac{\left(\sqrt{y-1}-1\right)^3}{y\left(\sqrt{y-1}+1\right)}=0\)
\(\Leftrightarrow\left(x-2\right)\frac{\left(\sqrt{x-1}-1\right)^3\left(\sqrt{x-1}+1\right)^3}{x\left(\sqrt{x-1}+1\right)^4}+\left(y-2\right)\frac{\left(\sqrt{y-1}-1\right)^3\left(\sqrt{y-1}+1\right)^3}{y\left(\sqrt{y-1}+1\right)^4}=0\)
\(\Leftrightarrow\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}+\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}=0\)
Vì \(x\ge1;y\ge1\Rightarrow\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}\ge0;\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}+\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}\ge0\)
Do đó dấu ''='' xảy ra khi \(\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}=\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}=0\Leftrightarrow x-2=y-2=0\Leftrightarrow x=y=2\)
Vậy \(x=y=2\).
rút gọn :
a.\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}vớix>=8\)
b,\(\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}\)
c,\(\frac{\sqrt{x-2\sqrt{x+1}}}{x+2\sqrt{x+1}}\Rightarrow vớix>=0\)
d,\(\frac{x-1}{\sqrt{y-1}}\cdot\sqrt{\frac{\left(y-2\sqrt{y+1}\right)^2}{\left(x-1\right)^4}}\)
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)
=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)
=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)
=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)
c,d sai dau bai hay sao y
Giải hệ pt:
1.\(\sqrt[4]{x}\left(\left\{\left\{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right\}\right\}\right)=2\)
2.\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=1\)
SOS
Giải hệ pt:
1.\(\sqrt[4]{x}\left(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=2\)
2.\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=1\)