x\(^2\)-2x+1=3x(x-1)
giải pt
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
giải pt:
|3x+5|=2x-2
|x\(^2\)+1|=2x
|2x\(^2\)+3x+1|=|x+1|
a, đk : x >= 1
\(\left[{}\begin{matrix}3x+5=2x-2\\3x+5=2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\left(ktm\right)\)
vậy pt vô nghiệm
b, đk >= 0
\(\left[{}\begin{matrix}x^2+1=2x\\x^2+1=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
c, \(\left[{}\begin{matrix}2x^2+2x=0\\2x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x\left(x+1\right)=0\\x^2+2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0;x=-1\\x=-1\end{matrix}\right.\)
giải các pt sau:
a)|2x+1|=4
b)|3x-2|+1=0
c)|3x+5|=2x-2
d)|x\(^2\)+1|=2x
e)|2x\(^2\)+3x+1|=|x+1|
\(\left|2x+1\right|=4.\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=-4.\\2x+1=4.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}.\\x=\dfrac{3}{2}.\end{matrix}\right.\)
\(\left|3x-2\right|+1=0.\)
\(\Leftrightarrow\left|3x-2\right|=-1\) (vô lý).
\(\Rightarrow x\in\phi.\)
\(5) (3x -1)^2 - (x +3)(2x-1) = 7(x + 1)(x -2) -3x\)
Giải pt
Giải pt:
\(\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}=x^4-x^2-2x+4\)
đk: \(-x^4+3x-1\ge0\)
Có \(-\left(x^4+1\right)\le-2x^2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\)
Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\) (*)
Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)
Từ (*) (2*) dấu = xảy ra khi x=1 (TM)
Vậy x=1
2x(x-1)+(x+1)^2=1+3x^2 ( giải pt)
`2x(x-1)+(x+1)^2=1+3x^2`
`<=>2x^2 -2x+x^2 +2x+1=1+3x^2`
`<=>2x^2 +x^2 -3x^2 -2x+2x=1-1`
`<=>0x=0` (luôn đúng)
Vậy phương trình vô số nghiệm
=>2x^2-2x+x^2+2x+1=3x^2+1
=>1=1(luôn đúng)
\(2x\left(x-1\right)+\left(x+1\right)^2=1+3x^2\)
\(\Leftrightarrow2x^2-2x+x^2+2x+1=1+3x^2\)
\(\Leftrightarrow2x^2+x^2-3x^2-2x+2x+1=1\)
\(\Leftrightarrow1=1\) (luôn đúng)
Giúp e vs ạ Giải bất pt: a) 2x - x(3x + 1) < 15 - 3x(x + 2) b) 4(x - 3)² - (2x - 1)² ≥ 12x
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(a,2x-x\left(3x+1\right)< 15-3x\left(x+2\right)\\ \Leftrightarrow2x-3x^2-x< 15-3x^2-6x\\ \Leftrightarrow3x^2-3x^2+2x+6x-x< 15\\ \Leftrightarrow7x< 15\\ \Leftrightarrow x< \dfrac{15}{7}\)
Vậy S={-∞; 15/7}
\(b,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12x\\ \Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\ge0\\ \Leftrightarrow4x^2-4x^2-24x+4x-12x\ge-36+1\\ \Leftrightarrow-32x\ge-35\\ \Leftrightarrow x\le\dfrac{35}{32}\)
Vậy S={-∞; 35/32]
Giải pt sau
a,\(^{x^2-6x+26=6\sqrt{2x+1}}\)
b,\(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
Bài 1 : Giải các pt sau :
c) |2x - 1| = x + 2
Bài 2 : giải các BPT sau :
a) 2( 3x - 1 ) < x + 4
b) 5 -2x/3 + x ≥ x/2 + 1
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
GIẢI PT
a) 4x-8/ 2x^2 +1=0
b) x^2 -x-6 / x-3=0
c) x+5 /3x-6 - 1/2 =2x-3 /2x -4
d) 12 / 1-9x^2 = 1-3x / 1+3x - 1+3x / 1-3x
<=>4x-8=0
<=>4x=8
=.x=2(nhan)