Cho đa thức P(x)= ax3+bx2+cx+d
Với a,b,c,d∈Z. Biết P(x)⋮5
CTR: a,b,c,d cùng chia hết cho nhau.
Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5
cho A(x)=ax3 bx2 cx d chia hết cho 3. (a;b;c;d thuộc z). Biết A(x) chia hết cho 3 với mọi x thuộc z. CMR a;b;c;d chia hết cho 3. cần gấp, ai giúp mình vs
Cho đa thức: f(x)=x4+ax3+bx2+cx+df(x)=x4+ax3+bx2+cx+d ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(9)+f(-5
)
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
1 a. tìm số tự nhiên n để phân số 7n-8/2n-3 có giá trị lớn nhất
b. Cho đa thức p(x)=ax3+bx2+cx+d với a,b,c,d là các hệ số nguyên . Biết rằng p(x) chia hết cho 5 với mọi x nguyên. Chứng minh rằng a,b,c,d đều chia hết cho 5
c. cho a b c là độ dài 3 cạnh tam giác chứng minh a/b+c + b/a+c +c/a+b < 2
mình cần gấp nha, cảm ơn
a) Cho P(x) = ax2 + bx + c (a, b, c nguyên). Biết rằng P(x) chia hết cho 3 với mọi giá trị nguyên của x. CMR: a, b, c đều chia hết cho 3.
a) Cho Q(x) = ax3 + bx2 + cx + d (a, b, c, d nguyên). Biết rằng Q(x) chia hết cho 5 với mọi giá trị nguyên của x. CMR: a, b, c, d đều chia hết cho 5.
(Giup mình với, mai mình phải nộp)
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng:
b/Các hệ số đều khác nhau.
A: 525
B: 96
C: 192
D:384
Khi các hệ số khác nhau:
- Có 4 cách chọn hệ số a (a≠0).
- Khi đã chọn a, có 4 cách chọn b.
- Khi đã chọn a và b, có 3 cách chọn c.
- Khi đã chọn a, b và c có 2 cách chọn d.
Theo quy tắc nhân ta có. 4.4.3.2=96 đa thức.
Chọn B.
Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng:
a/Các hệ số tùy ý.
A. 3125
B. 625
C. 500
D. 360
Khi các hệ số tùy ý; ta cần thực hiện các bước sau:
Chọn hệ số a: có 4 cách chọn hệ số a vì a≠0.
Chọn hệ số b: có 5 cách chọn hệ số b.
Chọn hệ số c: có 5 cách chọn hệ số c
Chọn hệ số d: có 5 cách chọn hệ số d.
Theo quy tắc nhân có: 4.5.5.5=500 đa thức.
Chọn C.