Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc Minh
Xem chi tiết
Đặng Đình Tùng
21 tháng 8 2021 lúc 20:14

`a)`

`A=(x+1)(2x-1)`

`=2x^{2}+x-1`

`=2(x^{2}+(1)/(2)x-(1)/(2))`

`=2(x^{2}+(1)/(2)x+(1)/(16)-(9)/(16))`

`=2(x+(1)/(4))^{2}-(9)/(8)>= -9/8` với mọi `x`

Dấu `=` xảy ra khi :

`x+(1)/(4)=0<=>x=-1/4`

Vậy `min=-9/8<=>x=-1/4`

``

`b)`

`(4x+1)(2x-5)`

`=8x^{2}-18x-5`

`=8(x^{2}-(9)/(4)x-(5)/(8))`

`=8(x^{2}-(9)/(4)x+(81)/(64)-(121)/(64))`

`=8(x-(9)/(8))^{2}-(121)/(8)>= -(121)/(8)` với mọi `x`

Dấu `=` xảy ra khi :

`x-(9)/(8)=0<=>x=9/8`

Vậy `min=-121/8<=>x=9/8`

Nguyễn Việt Lâm
21 tháng 8 2021 lúc 20:15

\(A=2x^2+x-1=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(A_{min}=-\dfrac{9}{8}\) khi \(x=-\dfrac{1}{4}\)

\(B=8x^2-18x-5=8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)

\(B_{min}=-\dfrac{121}{8}\) khi \(x=\dfrac{9}{8}\)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 20:21

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{9}{8}=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)Vì \(2\left(x+\dfrac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(ĐTXR\Leftrightarrow x=-\dfrac{1}{4}\)

b) \(B=\left(4x+1\right)\left(2x-5\right)=8x^2-18x-5=8\left(x^2-\dfrac{9}{4}x+\dfrac{81}{64}\right)-\dfrac{121}{8}=8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\)

Vì \(8\left(x-\dfrac{9}{8}\right)^2\ge0\Rightarrow8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{9}{8}\)

Bùi Hải Hà My
Xem chi tiết
Quách Minh Hưng
Xem chi tiết
nguyen thanh tung
Xem chi tiết
Tạ Phương Linh
Xem chi tiết
Sarah
30 tháng 9 2018 lúc 12:32

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

Lung Thị Linh
30 tháng 9 2018 lúc 12:39

a+b+c=1 <=> a+b=1-c

+) Nếu 1-c=0 => a+b=0 <=> a=-b

=> A = a2015+b2015+c2015

A = (-b)2015+b2015+c2015

A = c2015 => A = 1 (Vì 1-c=0) (1)

Ta có: a3+b3+c3=1

a3+b3=1-c3

(a+b)(a2-ab+b20=(1-c)(1+c+c2)

=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)

=> a2-ab+b2=1+c+c2

(a+b)2-3ab=(1-c)2+3c

=> -3ab=3c <=> -ab=c

Thay -ab = c vào a+b+c=1, ta có:

a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0

=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1

+) Nếu a=1 => b+c=0 <=> b=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015-b2015

=> A=a2015 => A=1 (2)

+) Nếu b=1 => a+c=0 <=>a=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015+-a2015

=> A=b2015 => A=1 (3)

Từ (1)(2)(3) => A = 1

Vậy A = 1 với a+b+c=1 và a3+b3+c3=1

b) B = x2-3x+2016

B=x2-3x+2,25+2013,75

B=(x-1,5)2+2013,75

Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75

=> B ≥ 2013,75

=> GTNN của B bằng 2013,75

Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5

Vậy GTNN của B bằng 2013,75 tại x = 1,5

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2018 lúc 8:10

Phạm Phương Linh
Xem chi tiết
Phía sau một cô gái
1 tháng 8 2021 lúc 21:15

Áp dụng bất đẳng thức Cô - si ta có:

\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(S\) \(=\)  \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\)  ⇔  \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)

                                ⇔ \(a=b=0,5\)

GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)

 

 

anbe
1 tháng 8 2021 lúc 21:38

S=\(ab+\dfrac{1}{ab}\) 

Ta có :

Áp dụng BĐT Cauchy(cô-sy),ta có

1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)

Đặt x=ab(x\(\le\dfrac{1}{4}\))

\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)

Áp dụng BĐT Cauchy (Cô -si):

\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)

 

 

Nguyễn Thùy Duyên
Xem chi tiết
tran ha my
5 tháng 11 2017 lúc 15:17

GTNN là gì z.tui ko  hiểu nên ko giải được!

GTNN là giá trị nhỏ nhất

Neymar jr
6 tháng 4 2018 lúc 19:38

giá trị nhỏ nhất

Trang Nguyễn Ngọc Kiều
Xem chi tiết
Quỳnh Anh
19 tháng 2 2021 lúc 12:49

Trả lời:

Bài 1: a,

\(A=\left|x-1\right|+3\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)

Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)

Vậy GTNN của A = 3 khi x = 1

\(B=\left|x-7\right|-4\)

Vì \(\left|x-7\right|\ge0\forall x\)

  \(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)

Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)

Vậy GTNN của B = -4 khi x = 7

b, \(C=-\left|x-3\right|+2\)

Vì \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)

Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)

Vậy GTLN của C = 2 khi x = 3

Khách vãng lai đã xóa