Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Trần Ngọc Bích Vân
14 tháng 6 2017 lúc 10:37

a) Với mọi \(x,y\in Q\), ta luôn luôn có:

\(x\le\left|x\right|\)\(-x\le\left|x\right|\) ; \(y\le\left|y\right|\)\(-y\le\left|y\right|\)

Suy ra \(x+y\le\left|x\right|+\left|y\right|\)\(-x-y\le\left|x\right|+\left|y\right|\)

hay \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

b) Theo câu a ta có:

\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) ,suy ra \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

Nguyệt Nga Hồ
Xem chi tiết
Giang Quỳnh
31 tháng 5 2017 lúc 9:57

a, Vì hai vế đều ko âm nên ta đuợc :

\(\left|x+y\right|^2\)<=\(\left(\left|x\right|^2+\left|y\right|^2\right)\)

<=> (x+y)(x+y) <= \(\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)

<=> \(x^2+2xy+y^2\) <= \(x^2+2\left|x\right|\left|y\right|+y^2\)

<=> xy <= |xy| ( Luôn đúng với mọi x và y )

Vậy BĐT trên đúng. Dấu ' = ' xảy ra khi x, y cùng dấu

b, Áp dụng từ câu a , bạn suy ra nhé !

Tuyết Nhi Melody
31 tháng 5 2017 lúc 9:59

a) cả 2 vế không âm nên bình phương 2 vế ta được :

\(\left|x+y\right|^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right).\left(\left|x\right|+\left|y\right|\right)\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+2.\left|x\right|\left|y\right|+y^2\)

\(\Leftrightarrow xy\le\left|xy\right|\) Điều này luôn đúng với mọi số x ; y .

Vậy bất đẳng thức đã cho đúng . Dầu " ="khí | xý | = xy <=> x ; y cùng dấu .

b) Áp dụng câu a) ta có : | x - y| + |y| \(\ge\) | (x-y) + y | = |x|

=> |x - y | \(\ge\)|x| + | y|

Đầu " = " xảy ra <=> (x-y) và y cùng dấu

Hải Ngân
31 tháng 5 2017 lúc 16:15

a) Với mọi x, y \(\in\) Q ta luôn có x \(\le\) \(\left|x\right|\) và -x \(\le\) \(\left|x\right|\);

y \(\le\) \(\left|y\right|\) và -y \(\le\) \(\left|y\right|\) \(\Rightarrow\) x + y \(\le\) \(\left|x\right|\) + \(\left|y\right|\) và -x - y \(\le\) \(\left|x\right|\) - \(\left|y\right|\)

hay x + y \(\ge\) -( \(\left|x\right|\) + \(\left|y\right|\) ).

Do đó -( \(\left|x\right|\) + \(\left|y\right|\) ) \(\le\) x + y \(\le\) \(\left|x\right|\) + \(\left|y\right|\) .

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|.\)

(Dấu "=" xảy ra khi xy \(\ge\) 0).

b) Theo câu a ta có:\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\Rightarrow\left|x-y\right|\ge\left|x\right|-\left|y\right|.\)

Nguyễn Thị Hiền Lương
Xem chi tiết
VN in my heart
Xem chi tiết
Tường Vy
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 17:28

\(\left|x\right|=\left|\left(x-y\right)+y\right|\le\left|x-y\right|+\left|y\right|\\ \Rightarrow\left|x\right|-\left|y\right|\le\left|x-y\right|\)

Dấu \("="\Leftrightarrow xy\ge0\)

Trường Phan
27 tháng 12 2021 lúc 17:35

\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

⇒ \(\left(\left|x-y\right|\right)^2\ge\left(\left|x\right|-\left|y\right|\right)^2\)

⇒ \(\left(x-y\right)^2\ge x^2+2\left|xy\right|-y^2\)

⇒ \(x^2-2xy-y^2\ge x^2-2\left|xy\right|-y^2\)

⇒ 2xy \(\ge\) \(2\left|xy\right|\)

Kết luận: ...

Chúc bạn học tốt!!

Nguyễn Thị Quỳnh
Xem chi tiết
Trần Thùy
Xem chi tiết
OO Tieu Tu Oo
Xem chi tiết
Nguyễn Đình Dũng
26 tháng 10 2016 lúc 5:20

a) |x| + |y| \(\ge\) |x+y|

Với mọi x,y : |x| \(\ge\) x ( Dấu "=" xảy ra khi x \(\ge\) 0 )

|y| \(\ge\) y ( Dấu "=" xảy ra khi y \(\ge\) 0 )

=> |x| + |y| \(\ge\) x+y (1)

Với mọi x,y : |x| > x ( Dấu "=" xảy ra khi x \(\le\) 0 )

|y| > y ( Dấu "=" xảy ra khi y \(\le\) 0 )

=> |x| + |y| = -(x+y) (2)

Từ (1) và (2) => |x| + |y| \(\ge\) |x+y|

OO Tieu Tu Oo
31 tháng 8 2016 lúc 21:30

giúp m vs

Vũ Văn Toàn
Xem chi tiết