tính A=6\1.3+6\3.5+6\5.7+...+6\(n-2).n với n thuộc N*
Tính A=2/1.3-4/3.5+6/5.7-8/7.9+...-20/19.21
1, (x-3)(x-5)<0
2, 2/1.3+2/3.5+2/5.7+...+2/99.101
3, 5/1.3+5/3.5+5/5.7+...+5/99.101
4, Chứng tỏ rằng phân số 2n+1/3n+2 là phân số tối giản
5, cho A=n+2/n-5(n thuộc Z;n khác 5) Tìm xđể A thuộc Z
mình làm câu 4 nha
Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)
=>(2n+1) : d và (3n+2) : d
=>3.(2n+1) :d và 2.(3n+2): d
=>(6n+3) :d và (6n+4) : d
=> ((6n+4) - (6n+3)) : d
=>1 :d => d=1
Vì d là ước chung của 2n+1/3n+2
mà d =1 => ƯC(2n+1/3n+2) =1
Vậy 2n+1/3n+2 là phân số tối giản
Tick mình nha bạn hiền .
Câu 4. Tính các tổng sau:
f) F = 1.2+2.3+3.4 +……..+ 2015.2016
g) G = 1.3+3.5+5.7 +……..+ 2015.2017
h) H = 1.4+4.7+7.10 +……..+ 2015.2018
i) I = 1+ 3+6 +……..+ 2031120
n) N = 1.3+2.4+3.5 +……..+ 1998.2000
m) M = 1.2.3+2.3.4+3.4.5 +……..+ 2015.2016.2017
n) N = 1.3.5+3.5.7+5.7.9 +……..+ 2013.2015.2017
tính A=1.3^3+3.5^3+5.7^3+...+ n.(n+2)^3
Chứng minh rằng:
1.2 + 2.3 + 3.4 +....+ n.(n+1) = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
1.3 + 3.5 + 5.7 +.....+ n.(n+2)=\(\frac{3+n.\left(n+2\right).\left(n+4\right)}{6}\)
Giúp mk vs
Đặt \(A=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+3n\left(n+1\right)\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\)
\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow1.2+2.3+3.4+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bạn ơi tại sao 3n.(n+1) lại bằng với n.(n+1).(n+2-n+1)
B = 3/2 + 3/6 + 3/12 + 3/15 +............... + 3/(n-1)n
C = 2/1.3 + 2/3.5 + 2/7.9 + ...................... + 2/30.32
D = 1/1.3 + 1/3.5 + ............. + 1/ ( n+1 )( n+3 )
Em xem lại đề câu B nhé\(B=\dfrac{3}{2}+\dfrac{3}{6}+\dfrac{3}{12}+\dfrac{3}{20}+...+\dfrac{3}{\left(n-1\right).n}\\ =3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{\left(n-1\right).n}\right)\\ =3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)=3.\left(1-\dfrac{1}{n}\right)=3.\dfrac{n-1}{n}=3-\dfrac{3}{n}.\)
\(C=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{30.32}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{30}-\dfrac{1}{32}\\ =1-\dfrac{1}{32}=\dfrac{31}{32}.\)
\(D=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n+1}-\dfrac{1}{n+3}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{n+3}\right)=\dfrac{1}{2}.\dfrac{n+2}{n+3}.\)
Tính nhanh:
B= 6/1.3 + 6/3.5 + 6/5.7 + 6/7.9 + .....+ 6/99.101
C= 6/15.18 + 6/ 18.21 + 6/21.24+ ......+ 6/87.90
C = \(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
C = \(2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
C = \(2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\frac{1}{18}\)
C = \(\frac{1}{9}\)
\(B=\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{99.101}\)
\(=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{9}{99.101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{101}\right)=3.\left(\frac{101}{101}-\frac{1}{101}\right)=3.\frac{100}{101}=\frac{300}{101}\)
\(C=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+....+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\left(\frac{6}{90}-\frac{1}{90}\right)=2.\frac{5}{90}=\frac{1}{9}\)
\(\dfrac{6}{1.3}+\dfrac{6}{3.5}+\dfrac{6}{5.7}+...+\dfrac{6}{99.100}\)
\(\dfrac{6}{1.3}+\dfrac{6}{3.5}+...+\dfrac{6}{99.100}\\ =3\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.100}\right)\\ =3\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(1-\dfrac{1}{100}\right)\\ =3.\dfrac{99}{100}\\ =\dfrac{297}{100}\)
Tính tổng C = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/(2n-1) ( 2n+1) ( n thuộc N)
Tốt hok giúp vs
bn lên ngạng hoặc và xem câu hỏi tương tự nha!
Nhớ k mk đấy nha!
thanks nhìu!
OK..OK..OK
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
Ta có :
\(\frac{2}{1.3}=1-\frac{1}{3}\)
\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)
...............................
\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)
\(\Rightarrow C=\frac{n}{2n+1}\)