Giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2x+2}{x+y}-\dfrac{3y}{x-y}=-5\\\dfrac{x+1}{x+y}+\dfrac{x}{x-y}=6\end{matrix}\right.\)
Đề bài: giải hệ phương trình bằng phương pháp đặt ẩn phụ.
a. \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{x+y}{xy}+\dfrac{xy}{x+y}=\dfrac{5}{2}\\\dfrac{x-y}{xy}+\dfrac{xy}{x-y}=\dfrac{10}{3}\end{matrix}\right.\)
Giúp mình với mình đang cần gấp
a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))
Đặt \(\dfrac{x}{x+1}\) là A
\(\dfrac{y}{y+1}\) là B
Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)
Giải HPT (1) ta được A= \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)
+Với A=\(\dfrac{7}{5}\) ta có:
\(\dfrac{x}{x+1}=\dfrac{7}{5}\)
<=>\(5x=7x+7\)
<=>-2x=7
<=> x=\(-\dfrac{7}{2}\)
+Với B = \(-\dfrac{4}{5}\) ta có:
\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)
<=>5y=-4y-4
<=>9y=-4
<=>y=\(-\dfrac{4}{9}\)
Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)
Giải hệ phương trình sau:
a. \(\left\{{}\begin{matrix}\dfrac{x+2}{y}=\dfrac{x+1}{y-2}\\\dfrac{5x+1}{5x-2}=\dfrac{y-2}{y+2}\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}2x+\left|y\right|=4\\4x-3y=1\end{matrix}\right.\)
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
GIẢI HỆ PHƯƠNG TRÌNH: \(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\X-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\x-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=3\left(x+y+1\right)\\2\left(x-3y-5\right)=2x-y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y-3x-3y=3\\2x-6y-10-2x+y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-4y=3\\-5y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x+4y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x=-3-4y=-3-4\cdot\left(-2\right)=8-3=5\end{matrix}\right.\)
giải hệ sau bằng phương pháp thế
a)\(\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}-2x+3y=-1\\x+2y=3\end{matrix}\right.\)
giải hệ sau:
a)\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{4}{y}=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\dfrac{5}{x-1}+\dfrac{3}{3y-2}=1\\\dfrac{2}{2x-1}+\dfrac{1}{3y-2}=1\end{matrix}\right.\)
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
câu 3: giải hệ phương trình
a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{5x}{6}-y=\dfrac{-5}{6}\\\dfrac{2x}{2x+y}+3y=\dfrac{-2}{3}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x\sqrt{3}+3y=1\\2x-y\sqrt{3}=\sqrt{3}\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.=17\)
giúp mk vs ạ mk cần gấp
a) \(\left\{{}\begin{matrix}5a+b=5\\b-10a=-19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5a+b=5\\15a=24\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{5}\\b=-3\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{5}{x}+\dfrac{6}{y}=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{6}{y}=17\\\dfrac{6}{x}=30\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
b.
ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)
Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:
\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)
\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)
Thay xuống pt dưới:
\(6y+y=14\Rightarrow y=2\)
\(\Rightarrow x=4\)
Giải hệ phương trình sau:
1/ \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)\(\left(Đk:x,y\ne-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{2x}{x+1}+\dfrac{6y}{y+1}=-2\end{matrix}\right.\)
\(\Rightarrow\dfrac{5y}{y+1}=-5\)
\(\Leftrightarrow5y=-5y-5\)
\(\Leftrightarrow10y=-5\)
\(\Leftrightarrow y=-\dfrac{1}{2}\Rightarrow x=-2\)
<=>\(\dfrac{2x}{x+1}-\dfrac{x}{x+1}=4< =>x-4x=4< =>x=-\dfrac{4}{3}\Rightarrow y=-\dfrac{1}{4}\)
giải các hệ phương trình
a)\(\left\{{}\begin{matrix}x^2+y^2=1\\x^3+y^3=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{5}{12}\\x^2+y^2=1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2-xy+y^2=3\\2x^2-xy+3y^2=12\end{matrix}\right.\)
Bài 1: Giải hệ phương trình sau
\(\left\{{}\begin{matrix}\dfrac{1}{2x-y}+\left(x+3y\right)=\dfrac{3}{2}\\\dfrac{4}{2x-y}-5\left(x+3y\right)=-2\end{matrix}\right.\)
Bài 2: Cho phương trình: x\(^2\)+(m-1)x-m\(^2\)-2=0
a) CMR: phương trình luôn có 2 nghiệm phân biệt \(\forall\)m
b) Tìm m để biểu thức A=\(\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}4x^3+y^2-2y+5=0\\x^2+x^2y^2-4y+3=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{2x^2}{x^2+1}=y\\\dfrac{3y^3}{y^4+y^2+1}=z\\\dfrac{4z^4}{z^6+z^4+z^2+1}=x\end{matrix}\right.\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)