Cho x,y,z tm xy+yz+xz=1 Tìm Min
P=\(10(x^2+y^2)+z\)
cho x,y,z là các sô nguyên đôi một phân biệt tm xy+yz+xz=20, tìm min P=x+y+z
Cho các số thực x,y,z tM xy/x+ý=yz/ý+z=xz/x+z tính M=x2+y2+z2/xy+yz+xz
cho x,y,z là các số thực dương tm \(3xyz\ge x+y+z\)
tìm min của P= \(\frac{xy+yz+xz-1}{\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}}\)
Cho x,y,z>0. x+y+z=1
Tìm Min P=\(\frac{xy}{x^4+y^4+xy}+\frac{yz}{y^4+z^4+yz}+\frac{xz}{x^4+z^4+xz}\)
cho 3 số x,y,z>0 thỏa mãn x^2+y^2+z^2=3.tìm Min xy/z+yz/x+xz/y
Cho x ; y; z là các số dương TM : xy + yz + xz = 670 CMR :
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
cho x,y,z tm xy+yz+xz=1 tìm
min P=\(5x^2+16y^2+27z^2\)
các bn giải giúp mình với mình tick cho
Cho xy + yz + xz =1 .Tìm Min S= 3(x^2+y^2)+z^2
Thêm điều kiện x; y; z > 0
B1: Tìm điểm rơi
B2: Dùng cô - si
\(S=3\left(x^2+y^2\right)+z^2=\left(2x^2+\frac{1}{2}z^2\right)+\left(2y^2+\frac{1}{2}z^2\right)+\left(x^2+y^2\right)\)
\(\ge2.\sqrt{x^2z^2}+2.\sqrt{y^2z^2}+2.\sqrt{x^2y^2}\)
\(=2\left(xy+yz+zx\right)=2\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{\sqrt{5}};z=\frac{2}{\sqrt{5}}\)
cho các số thực x,y,z dương sao cho xy+yz+xz=1
tìm min A =\(10\left(x^2+y^2\right)+z^2\)
\(A=2\left(x^2+y^2\right)+\left(8y^2+\dfrac{1}{2}z^2\right)+\left(8x^2+\dfrac{1}{2}z^2\right)\ge2.2\sqrt{x^2y^2}+2\sqrt{8x^2.\dfrac{1}{2}z^2}+2.\sqrt{8x^2.\dfrac{1}{2}z^2}=4\left(xy+yz+zx\right)=4\)
\(A_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)