Tính:
3.S-2\(^{^{2003}}\) biết S= 1-2+2\(^2\)-2\(^3\)+...+2\(^{2012}\)
hãy tính giúp mình: 3.S-22003 biết S=1-2+22-32+...+22002
Tính K +2011 Biết
1+(1+2)+(1+2+3)+....+(1+2+3+4+...+2012)
2012*1+2011*2+....+1*2012
Biết p/s đó bằng K
Tính:
a) S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + ... + 2002 - 2003 - 2004 + 2005 + 2006
b) 3S - 22003 biết S = 1 - 2 + 22 - 23 + ... + 22002
a)Nhóm 4 số hạng liên tiếp từ số thứ 2
S=1+(2-3-4+5)+(6-7-8+9)+.....+(2002-2003-2004+2005)+2006=1+2006=2007
b)S=1-2+22-23+...+22002
=>2S=2-22+23-24+22003
=>S+2S=(1-2+22-23+...+22002)+(2-22+23-24+...+22003)
=>3S=1+22003
=>3S-22003\(=1+2^{2003}\)\(-2^{2002}\)\(=1\)
Trả lời :
Bạn Thắng Hoàng làm đúng rồi nha bạn !
Học tốt !
#Sơn%#
Tính:
3S-2\(^{2003}\) biết S=1-2+2\(^2\)-2\(^3\)+...+2\(^{2012}\)
Mik đag cần gấp lắm
\(2S=2-2^2+2^3-2^4+...+2^{2013}\)
\(\Leftrightarrow3S=2^{2013}+1\)
\(\Leftrightarrow3S-2^{2013}=1\)
Tính tổng:
S=2012+\(\dfrac{2012}{1+2}\)+\(\dfrac{2012}{1+2+3}\)+...+\(\dfrac{2012}{1+2+3+...2011}\)
tính 3s - 2 mũ 2003 biết
S= 1-2+2 mũ 2 -2 mũ 3 +...+2 mũ 2002
Cho S = 1- 2+ 2 ^2- 2^3 +..+ 2^2012 - 2^2013 . Tính 3*S-2^2014
S = 1 - 2 + 22 - 23+.....+ 22012 - 22013
2\(\times\)S = 2 - 22 + 23-.......- 22012 + 22013 - 22014
2 \(\times\) S + S = 1 - 22014
3S = 1 - 22014
3S - 22014 = 1 - 22014 - 22014 = 1 - 2.22014 = 1- 22015
tính tổng: S=2012+2012/1+2 + 2012/1+2+3 +.....+ 2012/1+2+3+......+2011
1, Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
2,Biết : 13 + 23 + .......+103 = 3025
Tính S = 23 + 43 + 63 + ....+ 203
Bài 1:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
Bài 2:
Ta có: \(S=23+43+63+...+203\)
\(\Rightarrow S=13+10+20+23+...+103+100\)
\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)
\(\Rightarrow S=3025+450\)
\(\Rightarrow S=3475\)
Vậy S = 3475
1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
=> P = \(\frac{1}{5}-\frac{2}{3}\)
P = \(\frac{3}{15}-\frac{10}{15}\)
=> P =\(\frac{-7}{15}\)
2. ta có:
S = 23 + 43 + 63 +...+ 203
=> S = 13 + 10 + 23 + 20 +...+ 103 + 100
=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )
=> S = 3025 + 550
=> S = 3575
Vậy S = 3575
1. \(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2003}+\dfrac{2}{2004}-\dfrac{2}{2005}}{\dfrac{3}{2003}+\dfrac{3}{2004}-\dfrac{3}{2005}}\)
=\(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{5\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}-\)\(\dfrac{2\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}{3\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}\)
=\(\dfrac{1}{5}-\dfrac{2}{3}\)
=\(-\dfrac{7}{15}\)