Tìm m,n nguyên dương thõa mãn:
a) 2m + 2n = 2m+n
b) 2m - 2n = 256
tìm x,y nguyên dương thỏa mãn:
2m - 2n = 256
\(2^m-2^n=2^8\)
\(\Rightarrow2^n.\left(2^m-n-1\right)=2^8\)
\(\Rightarrow2^m-n-1=2^8-n\)
dễ thấy......với 8-n khác 0 => vế trái lẻ (do m lớn hơn n) mà vế phải chẵn => vô nghiệm
\(\Rightarrow8-n=0\Rightarrow n=8\Rightarrow m-n=1\Rightarrow m=9\)
Vậy \(n=8;m=9\)
2m + 2n = 2m+n
Tìm m,n nguyên dương thỏa mãn.
Tham khảo:D
Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
m, n \(\in\)N* thõa \(\frac{m^2+2n}{n^2-2m}\)và \(\frac{n^2+2m}{m^2-2n}\)nguyên.
Chứng minh: a) trị tuyệt đối của (m-n) \(\le2\)
b) Tìm m,n thõa đề bài.
tìm m,n nguyên dương để 3m-1/2n và 3n-1/2m cùng là số nguyên dương
Tìm m, n thuộc Z sao cho 2m - 2n = 256
\(m,n\in\)N* thõa \(\frac{m^2+2n}{n^2-2m}\)và\(\frac{n^2+2n}{m^2-2n}\)nguyên.
Cm:
1) [m-n] \(\le\)2
2) Tìm m, n thõa đề bài
Cho m,n là các số nguyên dương:
A= (2+4+6+...+2m)/m ; B = (2+4+6+...+2n)/n
Biết A<B, hãy so sánh m và n
Dấu / là bạn viết theo dấu chia dạng phân số nhưng ko pít viết trên MT đó mà mk cx z :)
tìm m,n thỏa mãn:
a) 2m+2n=2m+n
Cho m và n là các số nguyên dương:
A=2+4+6+.....+2m/m ; B=2+4+6+.....+2n/n
Biết A<B, hãy so sánh m và n
Cho m và n là các số nguyên dương
A=2+4+6+...+2m/m
B=2+4+6+...+2n//n
Biết A<b, hãy so sánh m và n
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A<B=>1+m<1+n=>m<n
Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{2m-2}{2}+1\right]}{2}}{m}=\frac{\frac{2\left(m+1\right)m}{2}}{m}=\frac{\left(m+1\right)}{m}\)=m+1
B= \(\frac{\frac{\left(2n+2\right)\left[\frac{2n-2}{2}+1\right]}{2}}{n}=\frac{\frac{2\left(n+1\right)n}{2}}{n}=\frac{\left(n+1\right)n}{n}\)=n+1
Mà A<B
=>m+1<n+1
=>m<n