(x-1)3 +x3 +(x+1)3 = (x+2)3
tìm x biết
a) (x-2)3-x(x+1)(x-1)+6x(x-3)=10
b) (x+1)3-(x-1)3-6(x-1)2= -10
c) x3+3x2+3x+28=0
d) x3-6x2+12x-7=0
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
Tìm x, biết:
a) 2-x = 2 ( x - 2 ) 3 ; b) 8 x 3 - 72x = 0;
c) ( x - 1 , 5 ) 6 + 2 ( 1 , 5 - x ) 2 = 0; d) 2 x 3 +3 x 2 +3 + 2x = 0;
e) x 3 - 4x- 14x(x - 2) = 0; g) x 2 (x + 1)- x(x + 1) + x(x - 1) = 0.
Giải các phương trình sau:
a) 1 − 2 x 2 = 3 x x − 3 + x − 1 2 ;
b) 1 + x 3 + 1 − x 3 = 6 x + 1 2 ;
c) x − 4 4 − x + 3 = x 3 − 2 − x 6 ;
d) 5 x + 3 x − 4 5 15 = 3 − x 15 + 7 x 5 + 1 − x .
a) x = 0 b) x = - 1 3
c) x = 28 15 d) x = -82.
Bài 1 : Rút gọn
b) 1/x-3-1/x+3+2x/9-x2
c) x+1/x-2+4-5x/x3+4x:x-2/x2+44
Bài 2 Cho A=x3-1/(x-1)(x+2) ( với x khác 1; x khác -2)
a) Chứng tỏ biểu thức A=x3-1/(x-1)(x+2)biết x=-3
b) chứng tỏ để A=1
Câu 1:
b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)
\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)
c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)
Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)
\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)
\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
1) ĐKXĐ: \(x\notin\left\{-2;2\right\}\)
Ta có: \(\dfrac{x-1}{x+2}-\dfrac{9}{x^2-4}=\dfrac{-3}{x-2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{9}{\left(x-2\right)\left(x+2\right)}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2-3x+2-9=-3x-6\)
\(\Leftrightarrow x^2-3x-7+3x+6=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1;-1}
2)
Sửa đề: \(\dfrac{3x-3}{x^2-9}-\dfrac{1}{x-3}=\dfrac{x+1}{x+3}\)
ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{3x-3}{x^2-9}-\dfrac{1}{x-3}=\dfrac{x+1}{x+3}\)
\(\Leftrightarrow\dfrac{3x-3}{\left(x-3\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
Suy ra: \(3x-3-x-3=x^2-3x+x-3\)
\(\Leftrightarrow x^2-2x-3=2x-6\)
\(\Leftrightarrow x^2-2x-3-2x+6=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Vậy: S={1}
`1)(x-1)/(x+2)-9/(x^2-4)=-3/(x-2)(x ne 2)`
`<=>x^2-3x+2-9=-3x-6`
`<=>x^2-1=0`
`<=>x=+-1`
Bài 1. Giải các phương trình:
a) x3 + 2(x – 1)2 – 2(x – 1)(x + 1) = x3 + x – 4 – (x – 7)
b) 2(x – 3) + 1 = 2(x + 1) – 9
c) 3(x + 1)(x – 1) – 5 = 3x2 + 2
a) \(x^3+2\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)=x^3+x-4-\left(x-7\right)\).
\(\Leftrightarrow x^3+2\left(x^2-2x+1\right)-2\left(x^2-1\right)=x^3+x-4-x+7\)
\(\Leftrightarrow x^3+2x^2-4x+2-2x^2+2=x^3+3\)
\(\Leftrightarrow x^3-4x+4=x^3+3\)
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{4}\right\}\)
b) \(2\left(x-3\right)+1=2\left(x+1\right)-9\)
\(\Leftrightarrow2x-6+1=2x+2-9\)
\(\Leftrightarrow2x-5=2x-7\)
\(\Leftrightarrow2=0\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
c) \(3\left(x+1\right)\left(x-1\right)-5=3x^2+2\)
\(\Leftrightarrow3\left(x^2-1\right)-5=3x^2+2\)
\(\Leftrightarrow3x^2-3-5=3x^2+2\)
\(\Leftrightarrow3x^2-8=3x^2+2\)
\(\Leftrightarrow0=10\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
8. x3 - 4x2 +8x- 32 = 0
9. x3 +27+(x+3)(x-9) = 0
10. x² -10x +16 = 0
11. 2x2 + 3(x-1)(x+1)=5x(x+1)
12. (х+3)(х-3)-(х-2)(х+5)=0
giải các phương trình sau:
a)(√x+1+1)3+2√x−1=2−x(x+1+1)3+2x−1=2−x
b)x3=x4+x3+x2+x+2x3=x4+x3+x2+x+2
c)2(x2+x+1)2−7(x−1)2=13(x3−1)2(x2+x+1)2−7(x−1)2=13(x3−1)
d)8x2+√1x=52
Rút gọn .
a) (1-2x)3-(1+2x)3
b) (x-2)3-x3-x2+8
c) x3 +(2-x)3+6x2+12x
a: (1-2x)^3-(1+2x)^3
\(=1^3-3\cdot1^2\cdot2x+3\cdot1\cdot\left(2x\right)^2-8x^3-8x^3-12x^2-6x-1\)
\(=1-6x+12x^2-8x^3-8x^3-12x^2-6x-1\)
\(=-16x^3-12x\)
b: \(=x^3-6x^2+12x-8-x^3-x^2+8\)
\(=-7x^2+12x\)
c: \(=x^3+8-12x+6x^2-x^3+6x^2+12x\)
\(=12x^2+8\)
1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)
1: \(=x^2+1\)
3: \(=\left(x-y-z\right)^2\)