1) ĐKXĐ: \(x\notin\left\{-2;2\right\}\)
Ta có: \(\dfrac{x-1}{x+2}-\dfrac{9}{x^2-4}=\dfrac{-3}{x-2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{9}{\left(x-2\right)\left(x+2\right)}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2-3x+2-9=-3x-6\)
\(\Leftrightarrow x^2-3x-7+3x+6=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1;-1}
2)
Sửa đề: \(\dfrac{3x-3}{x^2-9}-\dfrac{1}{x-3}=\dfrac{x+1}{x+3}\)
ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{3x-3}{x^2-9}-\dfrac{1}{x-3}=\dfrac{x+1}{x+3}\)
\(\Leftrightarrow\dfrac{3x-3}{\left(x-3\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
Suy ra: \(3x-3-x-3=x^2-3x+x-3\)
\(\Leftrightarrow x^2-2x-3=2x-6\)
\(\Leftrightarrow x^2-2x-3-2x+6=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Vậy: S={1}
`1)(x-1)/(x+2)-9/(x^2-4)=-3/(x-2)(x ne 2)`
`<=>x^2-3x+2-9=-3x-6`
`<=>x^2-1=0`
`<=>x=+-1`