Cho ΔABC. Tia phân giác của ∠B cắt AC ở D. Trên tia đối của tia BA lấy E sao cdo BE=BC.
CMR: BD//EC
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy điểm E sao cho BE = BC. Chứng minh BD / / EC.
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh rằng BD // EC
Ta có: BD là tia phân giác của ∠ABC (giả thiết)
Suy ra: (1)
Lại có: BE = BC (giả thiết)
=>∆BEC cân tại B (theo định nghĩa)
Suy ra: ∠E= ∠BCE (tính chất tam giác cân)
∆BEC có ABC là góc ngoài đỉnh B
=>∠ABC= ∠E + ∠BCE (tính chất góc ngoài tam giác)
Suy ra: ∠ABC=2∠E
Hay ∠E = (1/2)∠ABC (2)
Từ (1) và (2) suy ra: ∠E = ∠B1 = (1/2)∠ABC
Vậy BD // CE (vì có cặp góc ở vị trí đồng vị bằng nhau)
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh BD // EC
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh BD // EC
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh BD // EC
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh rằng BD//EC
Tham khảo : Câu hỏi của Min Anna - Toán lớp 7 | Học trực tuyến
Ta có: BD là tia phân giác của \(\widehat{ABC}\left(gt\right)\)
\(\Rightarrow B_1=B_2=\left(\frac{1}{2}\right)ABC\)
Lại có : BE = BC (gt)
=>∆BEC cân tại B (theo định nghĩa)
\(\widehat{E}=\widehat{BCE}\) (tính chất tam giác cân)
\(\Delta BEC\) có ABC là ngoài đỉnh B
\(\Rightarrow\widehat{ABC}=\widehat{E}+\widehat{BCE}\) (tính chất góc ngoài tam giác)
\(\Rightarrow\widehat{ABC}=2\widehat{E}\)
Hay \(\widehat{E}=\widehat{B_1}=\left(\frac{1}{2}\right)\widehat{ABC}\)
Vậy BD // CE (vì có cặp góc ở vị trí đồng vị bằng nhau)
Chúc bạn học tốt !!!
Tự vẽ hình nha bn !
Ta có : ΔEBC cân B ( Vì BE=BC)
=> góc BEC = góc BCE ( Tam giác cân có hai góc ở đáy = nhau
mà góc BEC + góc BCE = góc ABC = 180 độ (t/c góc ngoài của Δ)
Ta lại có góc ABD = góc CBD (BD là tia p/g góc ABC)
=> 2 góc BEC = 2 góc CBD
=> góc BEC = góc CBD
mà 2 góc này ở vị trí đồng vị
=> BD//EC
cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE=BC. Chứng minh rằng BD//EC
Cho tam giác ABC.TIa phân giác của góc B cắt AC ở D .TRên tia đối của tia BA lấy E sao cho BE=Bc c/m rằng BD//EC
BD là phân giác ABC nên ABD = CBD
Có: ABD + CBD + BEC = 180o
=> 2.CBD + BEC = 180o (1)
Tam giác BEC có: BE = BC (gt) nên tam giác BEC cân tại B
=> BEC = BCE ( tính chất tam giác cân)
Tam giác BEC có: BEC + BCE + CEB = 180o ( tổng 3 góc của tam giác)
=> 2.BCE + CEB = 180o (2)
Từ (1) và (2) => CBD = BCE
Mà CBD và BCE là 2 góc ở vị trí so le trong nên BD // EC (đpcm)
Cho tam giác ABC. tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE=BC
Chứng minh BD // EC
*Tự vẽ hình
- Xét tam giác BEC có BE=BC(GT)
=> Tam giác BEC cân tại B
=> \(\widehat{E}=\widehat{BCE}\)
- Lại có :\(\widehat{BEC}+\widehat{BCE}=\widehat{ABC}\) (t/c góc ngoài của tam giác)
Mà : \(\widehat{ABD=}\widehat{DBC}=\widehat{\frac{ABC}{2}}\left(GT\right)\)
\(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{E}=\widehat{BCE};\widehat{E}+\widehat{BCE}=\widehat{ABD}\left(cmt\right)\)
=> \(\widehat{DBC}=\widehat{BCE}\)
Mà chúng là 2 góc so le trong
=> BD//EC