Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tâm Phạm
Xem chi tiết
Lightning Farron
15 tháng 8 2016 lúc 19:33

Ta áp dụng Cauchy 2 số

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\cdot2abcd\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)

Dấu = khi \(\begin{cases}a^4=b^4\\c^4=d^4\\a^2b^2=c^2d^2\end{cases}\)\(\Rightarrow a=b=c=d\)

 

Lightning Farron
15 tháng 8 2016 lúc 19:36

Nhanh hơn có thể dùng Cauchy 4 số 

\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4b^4c^4d^4}\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)

Dấu = khi các biến bằng nhau

\(\Leftrightarrow a=b=c=d\)

Lê Nguyên Bách
Xem chi tiết
Le Dinh Quan
Xem chi tiết
lộc Nguyễn
Xem chi tiết
Nguyễn Hải Minh
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Khách vãng lai đã xóa
hacker nỏ
Xem chi tiết
Nguyễn Ngọc Huy Toàn
13 tháng 5 2022 lúc 21:16

Ta có:\(a^4;b^4;c^4;d^4\ge0;\forall a;b;c;d\)

Áp dụng BĐT AM-GM, ta có:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}\)

\(a^4+b^4+c^4+d^4\ge4abcd\) ( đfcm )

 

phan gia huy
Xem chi tiết
pham trung thanh
10 tháng 2 2018 lúc 16:10

Áp dụng BĐT Cauchy, ta có:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)

Dấu = xảy ra khi a=b=c=d

Vậy a=b=c=d

Trần Đức Huy
2 tháng 5 2018 lúc 20:37

a4+b4+c4+d2>4abed

Vua hải tặc ZORO
Xem chi tiết
huỳnh minh quí
24 tháng 1 2016 lúc 17:06

bài này cũng có thể giải bằng cauchy 2 số

a^4+b^4+c^4+d^4≥2a^2b^2+2c^2d^2

<=>a^4+b^4+c^4+d^4≥2(a^2b^2+c^2d^2)

<=>a^4+b^4+c^4+d^4≥2.2abcd

<=>a^4+b^4+c^4+d^4≥4abcd

dấu "=" xảy ra khi {a^4=b^4;c^4=d^4;a^2b^2=c^2d^2 =>a=b=c=d

( dấu ^ là nâng lên lũy thừa nhiên bạn )

oOo tHằNg NgỐk tỰ Kỉ oOo
24 tháng 1 2016 lúc 17:09

Huỳnh Minh Quý lm đúng òi đó

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 14:28

Mở ảnh

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2020 lúc 22:50

Áp dụng bất đẳng thức Cosi cho những số không âm, ta được: 

\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)

Dấu '=' xảy ra khi a=b=c=d

hay tứ giác ABCD là hình thoi