Tìm x biết:
| 2x - 3 | = \(\dfrac{1}{3}\)
Cho biểu thức P = (\(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\)):(\(3+\dfrac{2}{1-x}\))
a)Rút gọn P
b) Tính P với |3x-2|+1=5
c)Tìm x biết P>0
d) Tìm x biết P=\(\dfrac{1}{6-x^2}\)
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
Tìm x biết:
\(\dfrac{2x+1}{x^2-2x+1}-\dfrac{2x+3}{x^2-1}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)
=>2x=-4
hay x=-2
tìm x biết :
a) \(\left|x+\dfrac{1}{2}\right|\)=\(\dfrac{5}{2}\) b) \(\left|2x-\dfrac{2}{3}\right|\)+\(\dfrac{1}{3}\)=0 c) |x-2| = 2x + 1
\(\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{1}{3}\\2x-\dfrac{2}{3}=\dfrac{-1}{3}\end{matrix}\right.\left[{}\begin{matrix}2x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)
a)\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c)\(\left[{}\begin{matrix}x-2=2x-1\\-x+2=2x-1\end{matrix}\right.\left[{}\begin{matrix}x-2=2x-1\\-x+2=2x-1\end{matrix}\right.\left[{}\begin{matrix}x-2x=-1+2\\-x-2x=-1-2\end{matrix}\right.\left[{}\begin{matrix}-1x=1\\-3x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=1:\left(-1\right)\\x=-3:\left(-3\right)\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Tìm x,y biết \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+6y-1}{5x}\)
Tìm x biết: a) 2x - \(\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{1}{6}\) b) \(\dfrac{1}{3}+\dfrac{2}{3}.\left(x-2\right)=3\)
a) \(2x-\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{1}{6}\)
\(2x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(2x=\dfrac{1}{3}+\dfrac{1}{3}\)
\(2x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}\div2\)
\(x=\dfrac{1}{3}\)
b) \(\dfrac{1}{3}+\dfrac{2}{3}\cdot\left(x-2\right)=3\)
\(\dfrac{2}{3}\cdot\left(x-2\right)=3-\dfrac{1}{3}\)
\(\dfrac{2}{3}\cdot\left(x-2\right)=\dfrac{8}{3}\)
\(x-2=\dfrac{8}{3}\div\dfrac{2}{3}\)
\(x-2=\dfrac{24}{6}\)
\(x-2=4\)
\(x=4+2\)
\(x=6\)
Tìm x biết:
\(a,3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(b,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(c,\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(d,\left(2x-3\right)\left(6-2x\right)=0\)
\(e,x:\dfrac{3}{4}+\dfrac{1}{4}=-\dfrac{2}{3}\)
\(f,\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(g,2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(h,\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(i,\left(-0,6x-\dfrac{1}{2}\right).\dfrac{3}{4}-\left(-1\right)=\dfrac{1}{3}\)
\(j,\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(k,\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(l,\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(m,3\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\)
\(n,60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(p,-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(q,3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)
a: =>1/2x=7/2-2/3=21/6-4/6=17/6
=>x=17/3
b: =>2/3:x=-7-1/3=-22/3
=>x=2/3:(-22/3)=-1/11
c: =>1/3x+2/5x-2/5=0
=>11/15x=2/5
hay x=6/11
d: =>2x-3=0 hoặc 6-2x=0
=>x=3/2 hoặc x=3
Tìm x, biết :
a) \(\dfrac{2x+1}{x^2-2x+1}-\dfrac{2x+3}{x^2-1}=0\)
b) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)
Tìm x biết: \(\dfrac{2x-3}{3}-\dfrac{3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
\(\Leftrightarrow2\left(2x-3\right)-9=5-3x-2\)
=>4x-6-9=-3x+3
=>7x=18
hay x=18/7
\(\Leftrightarrow\dfrac{2x-3}{3}-\dfrac{3}{2}-\dfrac{5-3x}{6}+\dfrac{1}{3}=0\)
\(\Leftrightarrow\dfrac{2\left(2x-3\right)-9-5+3x+2}{6}=0\)
\(\Leftrightarrow4x-6-9-5+3x+2=0\)
\(\Leftrightarrow7x-18=0\)
\(\Leftrightarrow7x=18\)
\(\Leftrightarrow x=\dfrac{18}{7}\)
tham khaot
⇔2(2x−3)−9=5−3x−2
=>4x-6-9=-3x+3
=>7x=18
hay x=18/7
Tìm x, biết:
\(\dfrac{2x-3}{4}\)=\(\dfrac{2}{3}\)+\(\dfrac{-1}{7}\)
2x-3/4=11/21
⇒2x-3.21=4.11
2x-3.21=44
2x-3=44/21
2x=44/21 +3
2x=107/21
x=107/42
Giải:
2x-3/4=2/3+-1/7
2x-3/4=11/21
=>(2x-3).21/84=44/84
=>(2x-3).21=44
2x-3 =44:21
2x-3 =44/21
2x =44/21+3
2x =107/21
x =107/21:2
x =107/42
Chúc bạn học tốt!!!
tìm x biết:
2x:(1+\(\dfrac{1}{1+2}\)\(+\dfrac{1}{1+2+3}\)\(+.....\)\(+\dfrac{1}{1+2+3+...+x}\))=2023
\(2x:\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)=2023\left(1\right)\)
Đặt \(A=\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)\)
\(\Rightarrow A=\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}\right)\)
\(\Rightarrow\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)\)
\(\Rightarrow\dfrac{1}{2}A=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)\)
\(\Rightarrow\dfrac{1}{2}A=1-\dfrac{1}{x+1}\)
\(\Rightarrow A=2\left(1-\dfrac{1}{x+1}\right)\Rightarrow A=\dfrac{2x}{x+1}\)
\(\left(1\right)\Rightarrow2x:\dfrac{2x}{x+1}=2023\)
\(\Rightarrow2x.\dfrac{x+1}{2x}=2023\left(x\ne0\right)\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)