bỏ dầu va rut gon bieu thuc :
a)(a+b)(a+b)
b)(a-b)(a-b)
(a+b)(a+b) rut gon bieu thuc
\(\left(a+b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\)
\(=a^2+2ab+b^2\)
Rut gon bieu thuc sau
\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\) voi a > 0 va b > 0
\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a^2b}{b^2a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a}{b}}\)
\(=2\sqrt{\frac{a}{b}}+\sqrt{ab}\)
Cho x/a =y/b =z/c va a b c x y z khac 0 rut gon bieu thuc b = ( a^2x + b^2y + c^2z ) / x^3 +y^3+z^3
rut gon bieu thuc
(-a-b+c) - (-a-b-c)
= ( -a ) -b +c + a +b +c
=[ ( -a ) + a ] + b - b + c + c
= 0 + ( b-b ) + ( c+c )
=0+0+ 2x
=2x
(-a-b+c) - (-a-b-c)
=-a-b+c+a+b+c
=(a-a)+(b-b)+(c+c)
=0+0+c.2
=c2
Cho bieu thuc : A = ( -a - b + c ) - ( -a - b -c )
a ) Rut gon A
A = (-a - b + c) - (-a - b - c)
= -a - b + c + a + b + c
= (a - a) + (b - b) + (c + c)
= 0 + 0 + 2c
= 2c
A = (-a - b + c ) - ( -a - b - c )
A = -a -b - c + a + b + c
A = (-a + a ) + (-b + b ) + (c + c)
A= 0 + 0 + 2c
A= 2c
Vay A= 2c
tik nha
A = (-a-b+c)-(-a-b-c)
= -a-b+c+a+b+c
= (-a+a)-(b-b)+(c+c)
= 0-0+c.2
= c.2
rut gon bieu thuc
(-a-b+c) - (-a-b-c)-2b
= -a - b + c + a + b +c -2b
= 2c- 2b
=2. ( c - b)
hok tốt
\(\left(-a-b+c\right)-\left(-a-b-c\right)-2b\)
\(=-a-b+c+a+b+c-2b\)
\(=2c-2b=2.\left(c-b\right)\)
rut gon bieu thuc
(-a-b+c) - (-a-b-c)-2b
= -a - b + c +a + b + c -2b
= 2c - 2b
= 2.(c - b)
hok tốt
=-a - b + c + a + b + c - 2b
=2c - 2b
=2 . ( c - b)
học tốt nha bạn hiền
Rut gon bieu thuc: (a-b+c)^2+2(a-b+c)(b-c)+(b-c)^2
Dùng hằng đẳng thức A2 + 2AB + B2 = ( A + B)2 :
Ta được ... = (a-b+c+b-c)2 = a2
cho 2 bieu thuc A=x+x^2/2-x va B=2x/x+1+3/x-2-2x^2+1/x^2-x-2 a, tinh gia tri cua A khi /2x-3/=1 b,tim dieu kien xac dinh va rut gon bieu thuc B c,tim so nguyen x de P=A.B dat gia tri lon nhat
mk dang can gap
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)