Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trương Nhật Anh
Xem chi tiết
Akai Haruma
11 tháng 11 2023 lúc 16:39

Lời giải:
Áp dụng TCDTSBN:

$\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2$

\(\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ y+z+1=2x\\ x+z+2=2y\\ x+y-3=2z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ x+y+z+1=3x\\ x+y+z+2=3y\\ x+y+z-3=3z\end{matrix}\right.\)

\(\left\{\begin{matrix} \frac{1}{2}+1=3x\\ \frac{1}{2}+2=3y\\ \frac{1}{2}-3=3z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{5}{6}\\ z=\frac{-5}{6}\end{matrix}\right.\)

crewmate
Xem chi tiết
ILoveMath
29 tháng 11 2021 lúc 20:58

Áp dụng t/c dtsbn ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)

Lê Bảo Nghiêm
Xem chi tiết
Akai Haruma
19 tháng 1 2021 lúc 0:08

Lời giải:

Bạn cần bổ sung điều kiện $x,y,z>0$

\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)

\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)

Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$

Xét hiệu:

\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$

$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:

$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$

Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$

Lê Ngọc Duyên
Xem chi tiết
ILoveMath
22 tháng 1 2022 lúc 20:26

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\Rightarrow y+z+1=2x\Rightarrow y+z=2x-1\left(1\right)\)

\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\Rightarrow x+z+1=2y\Rightarrow x+z=2y-1\left(2\right)\)

\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\Rightarrow x+y-2=2z\)

\(x+y+z=\dfrac{1}{2}\left(3\right)\)

Thay (1) vào (3) ta có:

\(x+y+z=\dfrac{1}{2}\\ \Rightarrow x+2x-1=\dfrac{1}{2}\\ \Rightarrow3x=\dfrac{3}{2}\\ \Rightarrow x=\dfrac{1}{2}\)

Thay (2) vào (3) ta có:

\(x+y+z=\dfrac{1}{2}\\ \Rightarrow y+2y-1=\dfrac{1}{2}\\ \Rightarrow3y=\dfrac{3}{2}\\ \Rightarrow y=\dfrac{1}{2}\)

Ta có:

\(x+y+z=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+z=\dfrac{1}{2}\\ \Rightarrow z=-\dfrac{1}{2}\)

Nguyễn Việt Lâm
22 tháng 1 2022 lúc 20:15

TH1: \(x+y+z=0\Rightarrow x=y=z=0\)

TH2: \(x+y+z\ne0\)

\(x+y+z=\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x+2y+2z=1\\2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\2x+2y+2z=3y+3z+1\\2x+2y+2z=3x+3z+1\\2x+2y+2z=3x+3y-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\y+z=0\\x+z=0\\x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2.1+2z=1\\y=-z\\x=-z\\x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}z=-\dfrac{1}{2}\\x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(0;0;0\right);\left(\dfrac{1}{2};\dfrac{1}{2};-\dfrac{1}{2}\right)\)

piojoi
Xem chi tiết
khoa
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 21:05

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

Nguyễn Viết Tùng
Xem chi tiết
Luyri Vũ
Xem chi tiết
Akai Haruma
11 tháng 7 2021 lúc 23:52

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
$\Rightarrow x+y+z\geq 3$

Áp dụng BĐT AM-GM:

$\frac{y^2}{2}+\frac{1}{2}\geq y$

$\frac{z^3}{3}+\frac{1}{3}+\frac{1}{3}\geq z$

$\Rightarrow P+\frac{7}{6}\geq x+y+z=3$

$\Rightarrow P\geq \frac{11}{6}$

Giá trị này đạt tại $x=y=z=1$

 

Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 21:51

\(\Rightarrow\dfrac{z+y+1}{x}=\dfrac{x+z+1}{y}=\dfrac{x+y-2}{z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2=x+y+z\\ \Rightarrow\left\{{}\begin{matrix}z+y+1=2x\\x+z+1=2y\\x+y-2=2z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z=2x-1\\x+z=2y-1\\x+y=2z+2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x-1=2-x\\2y-1=2-y\\2z+2=2-z\end{matrix}\right.\Rightarrow\left(x,y,z\right)=\left(1;1;0\right)\)

ILoveMath
Xem chi tiết
Akai Haruma
23 tháng 8 2021 lúc 11:19

Lời giải:

Áp dụng BĐT Cô-si:

\(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\)

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2\geq \frac{1}{3}.(\frac{9}{x+y+z})^2=\frac{27}{(x+y+z)^2}\)

\(\Rightarrow P\geq \frac{(x+y+z)^2}{3}+\frac{27}{(x+y+z)^2}\)

Áp dụng BĐT Cô-si:

\(\frac{(x+y+z)^2}{3}+\frac{1}{3(x+y+z)^2}\geq \frac{2}{3}\)

\(\frac{80}{3(x+y+z)^2}\geq \frac{80}{3}\)

\(\Rightarrow P\geq \frac{2}{3}+\frac{80}{3}=\frac{82}{3}\)

Vậy $P_{\min}=\frac{82}{3}$ khi $x=y=z=\frac{1}{3}$