Cho △ABC cân tại A. Gọi M là trung điểm của BC
a)Chứng minh △AMC vuông cân
b)Lấy D ∈ đoạn MC;kẻ BH⊥AD(H∈AD) và CK⊥AD(K∈AD).CMR:AH=CK
c)Chứng minh △AMH = △CMK
d)Chứng minh △MHK vuông cân
Cho △ABC vuông cân tại A. Gọi M là trung điểm của BC
a)Chứng minh △AMC vuông cân
b)Lấy D ∈ đoạn MC;kẻ BH⊥AD(H∈AD) và CK⊥AD(K∈AD).CMR:AH=CK
c)Chứng minh △AMH = △CMK
d)Chứng minh △MHK vuông cân
Cho ∆ ABC cân tại A. Trên AB lấy điểm M, trên AC lấy điểm N sao cho AM = AN ; gọi I là giao điểm của NB và MC.
a) Chứng minh: ∆ ANB = ∆ AMC.
b) Chứng minh: MN // BC.
c) Gọi D là trung điểm của BC. Chứng minh: A, D, I thẳng hàng.
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
P/s : Nhờ check hộ ạ =))
Cho ∆ ANC cân tại A . Trên AB lấy điểm M , trên AC lăyas điểm N sao cho AM =AN ; gọi I là giao điểm của NB và MC a,Chứng minh ∆ANB = ∆AMC b,Chứng mi h MN ∥BC d, Gọi D là Trung điểm và BC . Chứng minh 3 điểm A,I,D thẳng hàng
a: Xét ΔANB và ΔAMC có
AN=AM
\(\widehat{BAN}\) chung
AB=AC
Do đó: ΔANB=ΔAMC
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,D thẳng hàng
Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Cho tam giác ABC vuông tại A, có Góc B bằng 600.
Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của BD. Chứng minh
. ABC =ADC.
Chứng minh tam giác CBD cân.
Gọi K là trung điểm của BC. Đường thẳng DK cắt AC tại M. Chứng minh MC = 2MA.
Đường trung trực của cạnh AC cắt đường thẳng DC tại Q. Chứng minh 3 điểm B,M, Q thẳng hàng.
Tự kẻ hình nha
- Vì tam giác ABC vuông tại A (gt)
=> CA vuông góc với AB (tc)
=> tam gics ADC vuông tại A (tc)
- Xét tam giác vuống ABC và tam giác vuông ADC, có:
+ Chung AC
+ AB = AD ( A là trung điểm BD)
=> Tam giác vuông ABC = tam giác vuông ADC (2 cạnh góc vuông)
- Vì tam giác vuông ABC = tam giác vuông ADC (cmt)
=> CB = CD (2 cạnh tương ứng)
=> tam gics CBD cân (định nghĩa)
- Vì A là trung điểm BD (gt)
=> CA là trung tuyến tam giác CBD (dấu hiệu)
- Vì K là trung điểm BC (gt)
=> DK là trung tuyến tam gics CBD (dấu hiệu)
Mà CA và DK cắt nhau tại M (gt)
=> M là trọng tâm tam giác CBD (tc)
=> MC = 2/3 CA (tc)
=> MC = 2MA (đpcm)
- Gọi d là đường trung trực của AC
- Gọi N là giao điểm của AC và d
- Vì d là đường trung trực của AC (cách gọi)
=> d vuông góc với AC
=> góc QNC = 90o (tc) 1
=> AN = CN
- Vì tam giác ADC vuông tại A (cmt)
=> góc DAC = 90o (tc) 2
Từ 1 và 2 ta có:
=> DA // QN (đồng vị)
- Xét tam giác vuông QNA và tam giác vuông QNC, có:
+ Chung QN
+ AN = CN (cmt)
=> tam giác vuông QNA = tam giác vuông QNC (2 cạnh góc vuông)
=> góc AQN = góc CQN (2 góc tương ứng)
=> QA = QC (2 cạnh tương ứng)
- Vì DA // QN (cmt)
=> góc DAQ = góc AQN (so le trong)
=> góc CQN = góc ADQ (đồng vị)
Mà góc AQN = góc CQN (cmt)
=> góc DAQ = góc ADQ
=> tam giác QAD cân tại Q (dấu hiệu)
=> QA = QD (định nghĩa)
Mà QA = QC (cmt)
=> QD = QC
=> MQ là trung tuyến của DC
Mà M là trọng tâm của tam giác CBD (cmt)
=> BQ là trung tuyến tam giác CBD (tc)
=> B, M, Q thằng hàng (đpcm)
Cho △ABC cân tại A. Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. a) Chứng minh: △ABD = △ACE. b) Chứng minh: IB = IC. c) Lấy M là trung điểm của AI. Chứng minh MB = MC. d) Chứng minh AI vuông góc với BC
( CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!)
Cho ∆ABC cân tại A ( góc A nhọn , AB>BC ) . Gọi M là trung điểm của BC. a) Chứng minh: ∆ABM=∆AMC. b) Kẻ MD vuông góc với AB tại D , kẻ ME vuông góc với AC tại E . Chứng minh : ∆EDM là tam giác cân. c) Qua M kẻ đường thẳng song song với AB , cắt cạnh AC tại F . Chứng minh : F là trung điểm của AC Giải giúp mình ạ
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có
AM chung
góc DAM=góc EAM
=>ΔADM=ΔAEM
=>MD=ME
=>ΔMED cân tại M
c: Xét ΔCAB có
M là trung điểm của CB
MF//AB
=>F là trung điểm của AC
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC.
a) chứng minh AM vuông góc với BC và MA=MC
b) Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh MD=ME
c) Chứng minh MD+ME lớn hơn hoặc bằng AD+AE
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, D là điểm thuộc đoạn BM (D khác B và M). Kẻ các đường thẳng BH, CI lần lượt vuông góc với đường thẳng AD tại H và I. Chứng minh rằng :
a) Góc BAM = góc AMC và BH = AI
b) Tam giác MHI vuông cân.
Đáp án đây nha
https://hoidapvietjack.com/q/648113/cho-abc-vuong-can-tai-a-goi-m-la-trung-diem-bc-d-la-diem-thuoc-doan-bm-d-khac-b-
tam giác ABC cân tại A gọi AM vuông góc với BC a)Chứng minh rằng M là đường trung trực của đoạn BC
b) Về phía ngoài tam giác ABC lấy điểm D sao cho DB = BC chứng minh A,M,d mặt thẳng hànga: ΔABC cân tại A
mà AM là đường cao
nên AM là trung trực của BC(1)
b: DB=DC
nên D nằm trên trung trực của BC(2)
(1), (2) =>A,M,D thẳng hàng