tìm Min của:
\(\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\) với x,y >0
cho x,y>0.Tìm GTNN của A=\(\sqrt{\dfrac{x^3}{x^3+8y^3}}\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
x,y>0. tìm min k=\(\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
cho x,y>0.Tìm GTNN của A=\(\sqrt{\dfrac{x^3}{x^3+8y^2}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
cho x,y>0,Tìm GTNN của A=\(\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
MN giúp em với em cần gấp ạ
Lời giải:
\(A=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\)
Xét:
\(x^4+8xy^3-(x^2+2y^2)^2=8xy^3-4y^4-4x^2y^2\)
\(=-4y^2(x^2-2xy+y^2)=-4y^2(x-y)^2\leq 0\)
\(\Rightarrow x^4+8xy^3\leq (x^2+2y^2)^2\)
\(\Rightarrow \frac{x^2}{\sqrt{x^4+8xy^3}}\geq \frac{x^2}{x^2+2y^2}(*)\)
Mặt khác:
\(y^4+y(x+y)^3-(x^2+2y^2)^2=x^3y+3xy^3-2y^4-x^4-x^2y^2\)
\(=x^3(y-x)+3y^3(x-y)+y^4-x^2y^2\)
\(=x^3(y-x)+3y^3(x-y)+y^2(y-x)(y+x)\)
\(=(y-x)(x^3-2y^3+xy^2)\)
\(=(y-x)[(x-y)(x^2+xy+y^2)+y^2(x-y)]\)
\(=-(x-y)^2(x^2+xy+2y^2)\leq 0\)
\(\Rightarrow y^4+y(x+y)^3\leq (x^2+2y^2)^2\Rightarrow \frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\geq \frac{2y^2}{x^2+2y^2}(**)\)
Từ $(*); (**)\Rightarrow A\geq 1$
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min \(Q=\dfrac{4x^2}{x\left(3-4x^2\right)}+\dfrac{4y^2}{y\left(3-4y^2\right)}+\dfrac{4z^2}{z\left(3-4z^2\right)}\)
Ta chứng minh BĐT sau:
Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)
\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)
Tương tự và cộng lại:
\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)
Tìm Min của: \(\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\) với x,y>0
Cho xy+yz+zx=5 x,y,z>0
Tìm Min của A= \(\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min Q=\(\dfrac{4x^2}{x\left(32-4x^2\right)}+\dfrac{4y^2}{y\left(32-4y^2\right)}+\dfrac{4z^2}{z\left(32-4z^2\right)}\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)