Phân tích đa thứ sau thành nhân tư
a) x^6+x^4+x^2.y^2+y^4-y^6
b) 9(a+b)^2+16a-4b-(a-b)^2-24
c) (2a+b)^3+6a+3b-4
Phân tích đa thứ sau thành nhân tư
a) x^6+x^4+x^2.y^2+y^4-y^6
b) 9(a+b)^2+16a-4b-(a-b)^2-24
c) (2a+b)^3+6a+3b-4
Phân tích các đa thức sau thành nhân tử :
a) 4a^2b^2 + 36a^2b^3 + 6ab^4
b) 3n( m - 3 ) + 5m( m - 3 )
c) 2a( x - y ) - ( y - x )
d) 4a^2b^3 - 6a^3b^2
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
3n(m - 3) + 5m(m - 3)
= (3n + 5m)(m - 3)
2a(x - y) - (y - x)
= (x - y)(2a + 1)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
Phân tích đa thức thành nhân tử:
a)a^4-4b^2
b)9(a+b)^2-4(a-2b)^2
c)4(2a-b)^2-49(a-b)^2
d)4x^4+20x^2+25
e)9x^4+24x^2+16
g)4x^4-16x^2y^3+16y^6
h)9x^6-12x^7+4x^8
i)8x^6-27y^3
k)1/64x^6-125y^3
l)x^6+1
m)x^6-y^6
n)x^9+1
o)x^12-y^4
1.Phân tích đa thức thành nhân tử:
a) a^4-4b^2
b) 9(a+b)^2-4(a-2b)^2
c)4(2a-b)^2-49(a-b)^2
d)4x^4+20x^2+25
e)9x^4+24x^2+16
f)4x^4-16x^2y^3+16y^6
g)9x^6-12x^7+4x^8
h)8x^6-27y^3
k)1/64x^6-125y^3
i)x^6+1
l)x^6-y^6
m)x^9+1
n)x^12-y^4
Phân tích đa thức thành nhân tử
1) 2xy^3-6x^2+10xy
2) a^6-a^5-2a^3+2a^2
3) (a+b)^3-(a-b)^3
4) x^3-3x^2+3x-1-y^3
5) y(x^2+1)-x(y^2+1)
1) \(2xy^3-6x^2+10xy\)
\(=2x.y^3-2x.3x+2x.5y\)
\(=2x\left(y^3-3x+5y\right)\)
\(=2x[y\left(y^2-5\right)-3x]\)
2) \(a^6-a^5-2a^3+2a^2\)
\(=\left(a^6-a^5\right)-\left(2a^3-2a^2\right)\)
\(=\left(a^5.a-a^5.1\right)-\left(2a^2.a-2a^2.1\right)\)
\(=a^5\left(a-1\right)-2a^2\left(a-1\right)\)
\(=\left(a^5-2a^2\right)\left(a-1\right)\)
\(=a^2\left(a^3-2\right)\left(a-1\right)\)
3: \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(3a^2+b^2\right)\)
Phân tích các đa thức sau thành nhân tử
a) x^6-x^4-9x^3+9x^2
b) x^4-4x^3+8x^2-16x+16
c) (xy+4)^2-4(x+y)^2
d) (a+b+c)^2+(a-b+c)^2-4b^2
Nhờ mng mình đag cần gấp
Phân tích đa thức sau thành nhân từ
a) 3ab(x+y)-6ab(y+x)
b)7a(x-3)+a2(x2-9)
c)34(x+y)-x-y
d)25x4-942
e)(5a-b)2-(2a+3b)2
k)22-3a-b2+3b
Phân tích đa thức thành nhân tử
a. 3ab ( x+ y) - 6ab ( y+ x)
=( x + y) ( 3ab - 6ab )
= ( x +y ) ( - 3ab)
b.7a (x - 3)+a2(x2 - 9)
=7a( x- 3) + a2 ( x2 - 32)
=7a ( x - 3 ) + a2 ( x- 3 ) ( x+3 )
= ( x- 3) . 7a + a2 ( x + 3)
= ( x- 3) ( 7a +a2x + 3a2)
c. 34 (x + y) -x -y
= 34 ( x+ y) - ( x+y)
=(x +y ) ( 34 - 1) = 33 ( x+ y)
d. 25 x4 - 942
=( 5x2 )2 - 942
=( 5x2 - 94 ) ( 5x2+94)
e.( 5a - b )2 - ( 2a +3b)2
=( 5a -b -2a - 3b) (5a -b + 2a + 3b)
=(3a - 4b) (7a+ 2b)
k. 22 -3a - b2 +3b
=( 22 - b2 ) + ( -3a +3b)
=( 2-b) (2+b) + 3( -a +b)
mk làm đầu tiên nhớ tick cho mk nhé!!
Phân tích các đa thức sau thành nhân tử:
a) x2 - 9 - x2 (x2 - 9) d) x2 + 5x + 6 h) a2 + b2 + 2a – 2b – 2ab
b) x2(x-y) + y2(y-x) e) 3x2 – 4x – 4 i) (x + 1)2 – 2(x + 1)(y – 3) + (y – 3)2
c) x3+27+(x+3)(x-9) g) x4 + 64y4 k) x2(x + 1) – 2x(x + 1) + x + 1
Mình đang cần gấp ạ
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)