Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
kiếp đỏ đen
Xem chi tiết
Nguyễn Phương Mai
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2019 lúc 17:43

a/ \(I=\int\limits^1_0\dfrac{1}{\left(x^2+3\right)\left(x^2+1\right)}dx=\dfrac{1}{2}\int\limits^1_0\left(\dfrac{1}{x^2+1}-\dfrac{1}{x^2+3}\right)dx\)

\(=\dfrac{1}{2}\left(arctanx-\dfrac{1}{\sqrt{3}}arctan\dfrac{x}{\sqrt{3}}\right)|^1_0=\dfrac{\pi}{8}-\dfrac{\pi\sqrt{3}}{36}\)

b/ \(I=\int\dfrac{x^2-1}{x^4+1}dx=\int\dfrac{1-\dfrac{1}{x^2}}{x^2+\dfrac{1}{x^2}}dx\)

Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left(1-\dfrac{1}{x^2}\right)dx=dt\) ; \(x^2+\dfrac{1}{x^2}=t^2-2\)

\(\Rightarrow I=\int\dfrac{dt}{t^2-2}=\int\dfrac{dt}{\left(t-\sqrt{2}\right)\left(t+\sqrt{2}\right)}=\dfrac{1}{2\sqrt{2}}\int\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)dt\)

\(\Rightarrow I=\dfrac{1}{2\sqrt{2}}ln\left|\dfrac{t-\sqrt{2}}{t+\sqrt{2}}\right|+C=\dfrac{1}{2\sqrt{2}}ln\left|\dfrac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right|+C\)

c/ \(I=\int\dfrac{dx}{x\left(x^3+1\right)}=\int\dfrac{x^2dx}{x^3\left(x^3+1\right)}\)

Đặt \(x^3+1=t\Rightarrow3x^2dx=dt\)

\(\Rightarrow I=\dfrac{1}{3}\int\dfrac{dt}{\left(t-1\right)t}=\dfrac{1}{3}\int\left(\dfrac{1}{t-1}-\dfrac{1}{t}\right)dt=\dfrac{1}{3}ln\left|\dfrac{t-1}{t}\right|+C\)

\(\Rightarrow I=\dfrac{1}{3}ln\left|\dfrac{x^3}{x^3+1}\right|+C\)

d/ \(I=\int\limits^1_0\dfrac{xdx}{x^4+x^2+1}\)

Đặt \(x^2=t\Rightarrow2xdx=dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)

\(I=\dfrac{1}{2}\int\limits^1_0\dfrac{dt}{t^2+t+1}=\dfrac{1}{2}\int\limits^1_0\dfrac{dt}{\left(t+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{2}{3}\int\limits^1_0\dfrac{dt}{\dfrac{4}{3}\left(t+\dfrac{1}{2}\right)^2+1}\)

Đặt \(t+\dfrac{1}{2}=\dfrac{\sqrt{3}}{2}tanu\Rightarrow dt=\dfrac{\sqrt{3}}{2}.\dfrac{du}{cos^2u}\); \(\left\{{}\begin{matrix}t=0\Rightarrow u=\dfrac{\pi}{6}\\t=1\Rightarrow u=\dfrac{\pi}{3}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.\dfrac{\sqrt{3}}{2}\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{du}{cos^2u\left(tan^2u+1\right)}=\dfrac{\sqrt{3}}{3}\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}du=\dfrac{\pi\sqrt{3}}{18}\)

Nguyễn Phương Mai
22 tháng 1 2019 lúc 22:44

giup minh voi

Ngọc Ánh Nguyễn Thị
Xem chi tiết
Hoàng Tử Hà
17 tháng 1 2021 lúc 10:38

Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ 

Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)

x  -2  -1  1  2  
\(x^2-1\) 00 

\(\left(-2;-1\right):+\)

\(\left(-1;1\right):-\)

\(\left(1;2\right):+\)

\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)

\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)

\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)

Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính 

Hoàng Tử Hà
17 tháng 1 2021 lúc 10:56

2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)

\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)

\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)

Hoàng Tử Hà
17 tháng 1 2021 lúc 11:18

3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)

\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)

Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)

\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)

I=A+B=...

 

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:13

a.

Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)

\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)

\(=\dfrac{2}{15}\)

 

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:15

b.

\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)

Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)

\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)

\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:17

c.

\(\int\limits^2_1\dfrac{dx}{\sqrt{4-x^2}}\)

Đặt \(x=2sinu\Rightarrow dx=2cosu.du\)

\(\left\{{}\begin{matrix}x=1\Rightarrow u=\dfrac{\pi}{6}\\x=2\Rightarrow u=\dfrac{\pi}{2}\end{matrix}\right.\)

\(I=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{\sqrt{4-4sin^2u}}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{2cosu}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}du\)

\(=u|^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}=\dfrac{\pi}{3}\)

Trùm Trường
Xem chi tiết
Hoàng Tử Hà
21 tháng 3 2021 lúc 22:22

Đang học Lý mà thấy bài nguyên hàm hay hay nên nhảy vô luôn :b

\(I_1=\int\limits^1_0xf\left(x\right)dx\)

\(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)

\(\Rightarrow\int xf\left(x\right)dx=\dfrac{1}{2}x^2f\left(x\right)-\dfrac{1}{2}\int x^2f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0xf\left(x\right)dx=\dfrac{1}{2}x^2|^1_0-\dfrac{1}{2}\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{1}{2}\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{3}{10}\Rightarrow\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\)

Đoạn này hơi rối xíu, ông để ý kỹ nhé, nhận thấy ta có 2 dữ kiện đã biết, là: \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}and\int\limits^1_0x^2f'\left(x\right)dx=\dfrac{3}{5}\) có gì đó liên quan đến hằng đẳng thức, nên ta sẽ sử dụng luôn

\(\int\limits^1_0\left[f'\left(x\right)+tx^2\right]^2dx=0\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+2t\int\limits^1_0x^2f'\left(x\right)dx+t^2\int\limits^1_0x^4dx=0\)

\(\Leftrightarrow\dfrac{9}{5}+\dfrac{6}{5}t+\dfrac{1}{5}t^2=0\)  \(\left(\int\limits^1_0x^4dx=\dfrac{1}{5}x^5|^1_0=\dfrac{1}{5}\right)\)\(\)\(\Leftrightarrow t=-3\Rightarrow\int\limits^1_0\left[f'\left(x\right)-3x^2\right]^2dx=0\)

\(\Leftrightarrow f'\left(x\right)=3x^2\Leftrightarrow f\left(x\right)=x^3+C\)

\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0x^3dx=\dfrac{1}{4}x^4|^1_0=\dfrac{1}{4}\)

P/s: Có gì ko hiểu hỏi mình nhé !

Hồ Quốc Khánh
Xem chi tiết
Akai Haruma
20 tháng 11 2017 lúc 16:23

Câu a)

\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)

Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)

Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)

Vậy :

\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)

\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)

Câu b)

\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)

\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)

Do đó:

\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)

Akai Haruma
20 tháng 11 2017 lúc 16:46

Câu c)

\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)

\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)

\(=\frac{x^2}{2}+c+\ln ^2x\)

\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)

Câu d)

\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)

\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)

\(=1+\ln 3\)

Akai Haruma
20 tháng 11 2017 lúc 16:52

Câu e)

Xét \(\int 3x(x+\sqrt{x^2+16})dx=\int 3x^2dx+\int 3x\sqrt{x^2+16}dx\)

Có:

\(\int 3x^2dx=x^3+c\)

\(\int 3x\sqrt{x^2+16}dx=\frac{3}{2}\int \sqrt{x^2+16}d(x^2+16)\)

\(=\sqrt{(x^2+16)^3}+c\)

Do đó: \(\int 3x(x+\sqrt{x^2+16})dx=x^3+\sqrt{(x^2+16)^3}+c\)

\(\Rightarrow \int ^{3}_{0}3x(x+\sqrt{x^2+16})dx=\left.\begin{matrix} 3\\ 0\end{matrix}\right|(x^3+\sqrt{(x^2+16)^3}+c)=88\)

Thảob Đỗ
Xem chi tiết
Trùm Trường
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 22:07

Nếu đề là: \(I=\int\limits^1_0\dfrac{e^xx}{\left(x+1\right)^2}dx\) thì có thể tính bằng tích phân từng phần:

Đặt \(\left\{{}\begin{matrix}u=e^x.x\\dv=\dfrac{1}{\left(x+1\right)^2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(e^x+e^x.x\right)dx=e^x\left(x+1\right)dx\\v=-\dfrac{1}{x+1}\end{matrix}\right.\)

\(\Rightarrow I=-\dfrac{x.e^x}{x+1}|^1_0+\int\limits^1_0e^xdx=\dfrac{e^x}{x+1}|^1_0=...\)

Nguyễn Việt Lâm
27 tháng 1 2021 lúc 21:29

Trong chương trình toán của VN thì tích phân này không tính được bạn nhé

Biểu thức là \(\dfrac{x.e^x}{\left(x+1\right)^2}\) thì tính được