rút gọn biểu thức
\(\dfrac{x^2-10x+25}{x^2-3x-10}:\dfrac{x-5}{4x+8}\)
Rút gọn biểu thức:
a) x^2-10x+25/x^2-3x-10 / x-5/4x+8
b) 1/x+2 / x-1/x^3-3x+2
Đề là biểu thức hay phân thức ( nếu là biểu thức thi :)
a, \(x^2-10x+25=\left(x-5\right)^2\)
\(x^2-3x-10=x^2+2x-5x-10=\left(x-5\right)\left(x+2\right)\)
\(4x+8=4\left(x+2\right)\)
Nếu là phân thức thì =) p/s : viết đề hẳn hoi đi :v
a, \(\frac{x^2-10x+25}{x^2-3x-10}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+2\right)}=\frac{x-5}{x+2}\)
b, chả hiểu
rút gọn biểu thức sau:
B=\(\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{3x^2-2x-9}{2x^2-10x}\)(x≠0;x≠5)
\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{3x^2-2x-9}{2x\left(x-5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-3x^2+2x+9}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-3x^2+2x+9}{2x\left(x-5\right)}\)
\(=\dfrac{-10x-16}{2x\left(x-5\right)}=\dfrac{-5x-8}{x\left(x-5\right)}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2;-2\right\}\end{matrix}\right.\)
Ta có: \(\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{6}\)
\(=\dfrac{-1}{x-2}\)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Tìm TXĐ của biểu thức, rút gọn biểu thức và tìm giá trị của x để biểu thức, thu dọn âm:
(\(\dfrac{x+2}{3x}\) + \(\dfrac{2}{x+1}\) - 3) : \(\dfrac{2-4x}{x+1}\) + \(\dfrac{x^2-3x-1}{3x}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
Cho biểu thức:
A = (\(\dfrac{x^2}{x^3-4x}\) + \(\dfrac{6}{6-3x}\) + \(\dfrac{1}{x+2}\)) : (x - 2 + \(\dfrac{10-x^2}{x+2}\) )
Tìm tập xác định.
Với giá trị nào của x, giá trị của biểu thức rút gọn bằng 2??
\(A=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)ĐK : \(x\ne-2;2\)
\(=\left(\dfrac{x}{x-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{x-4}+\dfrac{2x+4+2-x}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)=\left(\dfrac{x}{x-4}+\dfrac{x+6}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)\)
\(=\left(\dfrac{x\left(x^2-4\right)+\left(x+6\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}\right):\dfrac{6}{x+2}\)
\(=\dfrac{x^3-4x+x^2-2x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{x^3+x^2-6x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{6}\)
\(=\dfrac{x^3+x^2-6x+24}{6\left(x-4\right)\left(x-2\right)}=\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}\)
P/s : mình thấy đề này cứ sai sai ở đâu ý !
b, Ta có : \(\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}=2\)
\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x^2-3x+6\right)-12\left(x-4\right)\left(x-2\right)}{6\left(x-4\right)\left(x-2\right)}=0\)
\(\Rightarrow x^3-11x^2+66x-72=0\)
bài 11.rút gọn biểu thức:
\(a,\dfrac{9x^2}{11y^2}:\dfrac{3x}{2y}:\dfrac{6x}{11y}\) \(b,\dfrac{3x+15y}{x^3-y^3}:\dfrac{x+5y}{x-y}\)
\(c,\dfrac{x^2-1}{x^2-4x+4}:\dfrac{x+1}{2-x}\) \(d,\dfrac{5x+10}{x+2}:\dfrac{5y}{x}\)
\(e,\dfrac{2x}{3x-3y}:\dfrac{x^2}{x-y}\) \(f,\dfrac{5x-3}{4x^2y}-\dfrac{x-3}{4x^2y}\)
\(g,\dfrac{3x+10}{x+3}-\dfrac{x+4}{x+3}\) \(h,\dfrac{4}{x-1}+\dfrac{2}{1-x}+\dfrac{x}{x-1}\)
\(i,\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\) \(j,\dfrac{x-2}{x-6}-\dfrac{x-18}{6-x}+\dfrac{x+2}{x-6}\)
\(k,\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\) \(m,\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(n,\dfrac{3}{x+3}-\dfrac{x-6}{x^2+3x}\) \(p,\dfrac{x+3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\)
f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)
g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)
h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)
n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)
p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)
m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
M=\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)
Rút gọn biểu thức M
\(M=\dfrac{x}{\left(x-2\right)\cdot\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\)
\(=\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-6}{x^2-4}\)
Cho biểu thức: P =(\(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\)) : \(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của M với \(\left|2x-5\right|=5\)
d) Với giá trị nào của x thì P = \(\dfrac{-1}{2}\)
e) Tìm các giá trị của x để M \(\ge-1\)
f) Tìm các giá trị x nguyên để \(\dfrac{1}{M}\) nhận giá trị nguyên