tìm min biết
A=3x^2+4xy+2x-2y+3+3y
BT11: Tìm hiệu A-B biết
\(a,-x^2y+A+2xy^2-B=3x^2y-4xy^2\)
\(b,5xy^2-A-6yx^2+B=-7xy^2+8x^2y\)
\(c,3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y\)
\(d,-6x^2y^3+A-3x^3y^2-B=2x^2y^3-7x^3y\)
\(e,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(f,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
tìm min A\(=2x^2+3y^2+4xy-8x-2y+18\)
Cho mình hỏi câu hỏi sau
a, Tìm MIN của A = x2 + y2 - xy - 2x - 2y +9
b, Tìm x,y thỏa mãn 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0
Mình cảm ơn nhiều!
a) Ta có: A = x2 + y2 - xy - 2x - 2y + 9
2A = 2x2 + 2y2 - 2xy - 4x - 4y + 18
2A = (x2 + y2 - 2xy) + (x2 - 4x + 4) + (x2 - 4y + 4) + 10
2A = (x - y)2 + (x - 2)2 + (y - 2)2 + 10 \(\ge\)10 \(\forall\)x
=>A \(\ge\)5 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\) <=> x = y = 2
Vậy MinA = 5 <=> x = y = 2
b) Ta có: 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0
=> (2x2 + 2y2 + 4xy) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Tìm x, y biết 3x-2y= 2x+3y=4xy
Bài 1:Tính:
a) (2x-y)+(2x-y)+(2x-y)+3y
b) (x+2y)+(x-2y)+(8x-3y)
c) (x+2y)-2(x-2y)-(2x-3y)
Bài 2: Cho 2 đa thức P= 9x²-6xy+3y² và Q= -3x²+7xy-2y²
Tìm đa thức M biết M+2(x²-4y²)+Q=6x²-4xy+5y²+P
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
TÌM MIN CỦA A=2x2+3y2 +4xy-8x-2y+18 ... Mơn nhiều
A = 2.(x^2+2xy+y^2-8x-8y+4)+(y^2+6y+9)+1
= 2.[(x+y)^2-2.(x+y).2+4]+(y+3)^2+1
= 2.(x+y-2)^2+(y+3)^2+1 >= 1
Dấu "=" xảy ra <=> x+y-2=0 hoặc y+3=0 <=> x=5 hoặc y=-3
Vậy Min của A = 1 <=> x=5 hoặc y=-3
Tk mk nha
thực hiện các phép tính sau:
a,3x^2.(2x^3-x+5)=6x^5-3x^3+15x^2
b,(4xy+3y-5x)x^2y=4x^3y^2+3x^2y^2-5x^3y
Answer:
\(3x^2.\left(2x^3-x+5\right)\)
\(=3x^2.2x^3+3x^2.(-x)+3x^2.5\)
\(=6x^5-3x^3+15x^2\)
\((4xy+3y-5x).x^2y\)
\(=4xy.x^2y+3y.x^2y-5x.x^2y\)
\(=4x^3+3x^2y^2-5x^3y\)
Tìm x, y
\(3x^2+3y^2+4xy+2x-2y=2=0\)
Sửa đề: \(3x^2+3y^2+4xy+2x-2y+2=0\)
=>\(2x^2+4xy+2y^2+x^2+2x+1+y^2-2y+1=0\)
=>\(2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
=>\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)