Phân tích đa thức thành nhân tử
5x3-3x2y-45xy2+27y3
phân tích đa thức sau thành nhân tử
27y3 - x3
\(27y^3-x^3\\=(3y)^3-x^3\\=(3y-x)[(3y)^2+3y\cdot x+x^2]\\=(3y-x)(9y^2+3xy+x^2)\)
phân tích đa thức sau thành nhân tử
e) x4 - 2x3 + x2 f) 27y3 - x3
e, x4 - 2x3 + x2
= x2( x2 - 2x + 1)
= x2 (x - 1)2
e: \(x^4-2x^3+x^2\)
\(=x^2\cdot x^2-x^2\cdot2x+x^2\cdot1\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
f: \(27y^3-x^3\)
\(=\left(3y\right)^3-x^3\)
\(=\left(3y-x\right)\left(9y^2+3xy+x^2\right)\)
\(e)x^4-2x^4+x^2 =x^2.x^2-2x.x^2+x^2+1 =(x^2)(x^2-2x+1) =x^2(x-1)^2 \)
\(f)27y^3-x^3 =(3y)^3-x^3 =(3y-3)(9y^2+3xy+x^2)\)
Phân tích đa thức thành nhân tử:
3x2y-6xy+2x-2
Để phân tích đa thức 3x^2y - 6xy + 2x - 2 thành nhân tử, ta thực hiện các bước sau: Bước 1: Nhóm các thuật ngữ chung nhau. 3x^2y - 6xy + 2x - 2 = (3x^2y - 6xy) + (2x - 2) Bước 2: Phân tách từng nhóm thuật ngữ. 3x^2y - 6xy = 3xy(x - 2) 2x - 2 = 2(x - 1) Bước 3: Kết hợp các nhân tử đã phân tích. 3x^2y - 6xy + 2x - 2 = 3xy(x - 2) + 2(x - 1) Do đó, đa thức đã được phân tích thành nhân tử là 3xy(x - 2) + 2(x - 1).
Phân tích đa thức thành nhân tử:
3x2y-6xy+2x-2
\(3x^2y-6xy+2x-4\) (sửa đề)
\(=3xy\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3xy+2\right)\)
Phân tích đa thức sau thành nhân tử: 3x2y-9y2z+12xy
=3y*x^2-3y*3yz+3y*4x
=3y*(x^2-3yz+4x)
x3– x + 3x2y + 3xy2 + y3– y=? (Phân tích đa thức thành nhân tử)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(x^3-x+3x^2+3xy^2+y^3-y\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
= (x3 + 3x2y + 3xy2 + y3) - (x+y)
= (x + y)3 - (x + y)
= (x + y).[(x+y)2 - 1 ]
= (x + y).(x + y - 1).(x + y + 1)
phân tích đa thức thành nhân tử: 5x3-10x2y+5xy2
\(=5x\left(x^2-2xy+y^2\right)\)
\(=5x\left(x-y\right)^2\)
Phân tích thành nhân tử:
\(5x^3-10x^2y+5xy^2=5x\left(x^2-2xy+y^2\right)=5x\left(x-y\right)^2\)
Chúc bạn học tốt!!!
\(5x^3-10x^2y+5xy^2\)
\(=5x\left(x^2-2xy+y^2\right)\)
\(=5x\left(x-y\right)^2\)
Phân tích đa thức sau thành nhân tử
a) 5x3 - 10x2+ 15x b) x2 - 3x + 2
a) \(5x^3-10x^2+15x=5x\left(x^2-2x+3\right)\)
b) \(x^2-3x+2=x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(x-1\right)\)
a: \(=5x\left(x^2-2x+3\right)\)
b: =(x-1)(x-2)
Phân tích đa thức thành nhân tử (bằng cách phối hợp 2 phương pháp)
a/ 5x2y - 20xy + 20y b/ 3x3 + 6x2 + 3x
c/ 3x2y - 12y d/ 7x3 – 28x2 + 28x
a) \(5x^2y-20xy+20y=5y\left(x^2-4x+4\right)=5y\left(x-2\right)^2\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(3x^2y-12y=3y\left(x^2-4\right)=3y\left(x-2\right)\left(x+2\right)\)
d) \(7x^3-28x^2+28x=7x\left(x^2-4x+4\right)=7x\left(x-2\right)^2\)
a: \(5x^2y-20xy+20y\)
\(=4y\left(x^2-4x+4\right)\)
\(=4x\left(x-2\right)^2\)
b: \(3x^3+6x^2+3x\)
\(=3x\left(x^2+2x+1\right)\)
\(=3x\left(x+1\right)^2\)
c: \(3x^2y-12y\)
\(=3y\left(x^2-4\right)\)
\(=3y\left(x-2\right)\left(x+2\right)\)
d: \(7x^3-28x^2+28x\)
\(=7x\left(x^2-4x+4\right)\)
\(=7x\left(x-2\right)^2\)
Phân tích đa thức này thành nhân tử.
x3−3x2y+3xy2−y3+y2−x2
=(x-y)^3-(x-y)(x+y)
=(x-y)(x^2-2xy+y^2-x-y)
\(x^3-3x^2y+3xy^2-y^3+y^2-x^2\)
\(=\left(x-y\right)^3-\left(x^2-y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-x-y\right)\)