rút gọn phân thức:
a)3x(1-x)/1(x-1)
b)6x2y2/8xy5
c)3(x-y)(x-z)2/6(x-y)(x-z)
rút gọn phân thức:
a)3x(1-x)/1(x-1)
b)6x2y2/8xy5
c)3(x-y)(x-z)2/6(x-y)(x-z)
a)\(\frac{3x\left(1-x\right)}{1\left(x-1\right)}=\frac{-3x\left(x-1\right)}{x-1}=-3x\)
Trắc nghiệm chọn đáp án đúng
1) điều kiệm để biểu thức 2 phần x-1 là một phân thức
A)x#1 ;b) x=1; c) x#0 ; d) x=0
2) phân thức bằng với phân thức 1-x phần y-x là:
A) x-1 phần y-x ; b) 1-x phần x-y ; c) x-1 phần x-y ; d) y-x phần 1-x
3) kết quả rút gọn của phân thức 2xy(x-y)^2 phần x-y bằng:
a) 2xy^2 ;b) 2xy(x-y) ; c) 2(x-y)^2; d) (2xy)^2
4) hai phân thức 1 phần 4x^2 y và 5 phần 6xy^3 z có mẫu thức chung đơn giản nhất là:
a) 8x^2 y^3 z ; b) 12 x^3 y^3 z ; c) 24 x^2 y^3 z ; d) 12 x^2 y^3 z
5) phân thức đối của phân thức 3x phần x+y là:
A) 3x phần x-y ;b) x+y phần 3x ;c) -3x phần x+y ;d) -3x phần x-y
6) phân thức nghịch đảo của phân thức -3y^2 phần 2x là:
A) 3y^2 phần 2x ; b) -2x^2 phần 3y ; c) -2x phần 3y^2 ; d) 2x phần 3y^2
Bài 1 rút gọn các phân thức:
a)(3x^2-11x+8)/(2x^2-9x+7)
b)(x^2+y^2+z^2-3xyz)/[(x-y)^2+(x-z)^2+(y-z)^2]
c)[(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3]/ (x-y)^3+(y-z)^3+(z-x)^3
a/ \(\frac{3x^2-11x+8}{2x^2-9x+7}=\frac{\left(x-1\right)\left(3x-8\right)}{\left(x-1\right)\left(2x-7\right)}=\frac{3x-8}{2x-7}\)
câu b,c tương tự nha ^^
1)Phân tích thành nhân tử:
a. (((x^2)+(y^2))^2)((y^2)-(x^2))+(((y^2)+(z^2))^2)((z^2)-(y^2))+(((z^2)+(x^2))^2)((x^2)-(z^2))
b. ((x-a)^4)+4a^4
c. (x^4)-(8x^2)+4
d. (x^8)+(x^4)+1
e. x((y^2)-(z^2))+y((z^2)-(x^2))+z((x^2)-(y^2))
f. (8x^3)(y+z)-(y^3)(z+2x)-(z^3)(2x-y)
g. (12x-1)(6x-1)(4x-1)(3x-1)-5
2) Cho (a^3)+(b^3)+(c^3)=3abc và abc khác 0. Tính A=(1+a/b)(1+b/c)(1+c/a).
3) Rút gọn phân thức:
((x^3)+(y^3)+(z^3)-3xyz)/(((x-y)^2)+((y-z)^2)+((z-x)^2))
1)Rút gọn bt
a)3x2(x+1)(x-1)-(x2-1)(x4+x2+1)+(x2-1)3
b)(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Phân tích đa thức thành nhân tử:
(x-1)(x+2)(x+3)(x+6)-6(x2+5x)2+45
1)
a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)
\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)
2)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)
\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)
\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)
` Y = ( 3x^2 - 3x - 3 )/(x^2+x-2) - (x+1)/(x+2) + (x-2)/(x).( (1)/(1-x) - 1)`
a) Rút gọn Y ( Đáp số Y = ` (x-2)/(x+2) ` )
b) Tìm x để Y = 2
c) Tìm x ∈ Z để Y ∈ Z
a: \(Y=\dfrac{3\left(x^2-x-1\right)-x^2+1}{\left(x+2\right)\left(x-1\right)}+\dfrac{x-2}{x}\cdot\dfrac{1-1+x}{1-x}\)
\(=\dfrac{2x^2-3x-2}{\left(x+2\right)\left(x-1\right)}+\dfrac{x-2}{x}\cdot\dfrac{-x}{x-1}\)
\(=\dfrac{2x^2-3x-2}{\left(x+2\right)\left(x-1\right)}-\dfrac{x-2}{x-1}\)
\(=\dfrac{2x^2-3x-2-x^2+4}{\left(x+2\right)\left(x-1\right)}=\dfrac{x^2-3x+2}{\left(x+2\right)\left(x-1\right)}=\dfrac{x-2}{x+2}\)
b: Y=2
=>2x+4=x-2
=>x=-6(nhận)
c; Y nguyên
=>x+2-4 chia hết cho x+2
=>x+2 thuộc {1;-1;2;-2;4;-4}
Kết hợp ĐKXĐ, ta được: x thuộc {-1;-3;-4;-6}
Bài 1 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 2 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
Rút gọn phân thức:
\(a,\dfrac{\left(x+y\right)^2-z}{x+y+z}\)
\(b,\dfrac{x^2-3x+2}{x^3-1}\)
\(c,\dfrac{x^2-y^2}{x^2-y^2+xz-yz}\)
\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x-2}{x^2+x+1}\)
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
1/Khai triển lập phương sau:
(1/x + 1/y)3
2/Tính
a)(x+y+z)(x-y-z)
b)(x+y+z)(x-y-z)
c)(x-y+z)(x+y-1)
3/Rút gọn:
a) -3x(x+2)2+(x+3)(x-1)(x+1)-(2x-3)2