Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng: \(A=p^{8n}+23p^{4n}+16\) chia hết cho 5.
Cho p là số nguyên tố lớn hơn 5. chứng minh rằng p8n +3.p4n -4 chia hết cho 5.
Cho p là số nguyên tố lớn hơn 5. chứng minh rằng p8n +3.p4n -4 chia hết cho 5.
p8n +3.p4n -4
=p4n.2+3.p4n-4
=(p4n)2+3.p4n-4
=p4n.p4n+3.p4n-4
=p4n.(p4n+3)-4
Vì p là số nguyên tố, p>5, nên:
p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.
Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.
=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.
=> p8n +3.p4n -4 chia hết cho 5.
=>ĐPCM.
Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.
VD:74=2401;118=214358881,...
=>Ta có:
p8n +3.p4n -4
=(...1)+3.(...1)-4
=(...1)+(...3)-4
=(...4)-4
=(...0) chia hết cho 5
Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5
Ta có:
p8n +3.p4n -4
=p4n.2+3.p4n-4
=(p4n)2+3.p4n-4
=p4n.p4n+3.p4n-4
=p4n.(p4n+3)-4
Vì p là số nguyên tố, p>5, nên:
p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.
Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.
=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.
=> p8n +3.p4n -4 chia hết cho 5.
=>ĐPCM.
Bài toán 6 : Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng : p8n +3.p4n - 4 chia hết cho 5.
cho p là số nguyên tố lớn hơn 5. chứng mjnh rằng p8n +3.p4n -4 chia hết cho 5
Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.
VD:74=2401;118=214358881,...
=>Ta có:
p8n +3.p4n -4
=(...1)+3.(...1)-4
=(...1)+(...3)-4
=(...4)-4
=(...0) chia hết cho 5
Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5
trần thùy dung thông minh wá
Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng: p8n + 3.p4n - 4 chia hết cho 5.
p8n +3.p4n -4
=p4n.2+3.p4n-4
=(p4n)2+3.p4n-4
=p4n.p4n+3.p4n-4
=p4n.(p4n+3)-4
Vì p là số nguyên tố, p>5, nên:
p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.
Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.
=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.
=> p8n +3.p4n -4 chia hết cho 5.
=>ĐPCM.
Lời giải:
Phân tích:
\(p^{8n}+3p^{4n}-4=p^{8n}-p^{4n}+4p^{4n}-4\)
\(=p^{4n}(p^{4n}-1)+4(p^{4n}-1)\)
\(=(p^{4n}+4)(p^{4n}-1)\)
\(=(p^{4n}+4)(p^{2n}-1)(p^{2n}+1)\)
Ta biết tính chất quen thuộc rằng một số chính phương chia $5$ được dư có thể là $0,1,4$
Vì $p$ là số nguyên tố lớn hơn $5$ nên $p^n$ không chia hết cho $5$. Do đó \((p^n)^2=p^{2n}\) chia $5$ dư $1$ hoặc $4$
Nếu $p^{2n}$ chia $5$ dư $1$ thì \(p^{2n}-1\vdots 5\Rightarrow p^{8n}+3p^{4n}-4\vdots 5\)
Nếu $p^{2n}$ chia $5$ dư $4$ thì \(p^{2n}+1\vdots 5\Rightarrow p^{8n}+3p^{4n}-4\vdots 5\)
Vậy \(p^{8n}+3p^{4n}-4\) luôn chia hết cho $5$ với mọi $p>5$
bài 4 cmr A= p8n+3p4n-4 chia hết cho 5 biết p và 5 là 2 số nguyên tố cùng nhau và p là số nguyên
bài 5 cho p và 2p+1 là 2 số nguyên tố p lớn hơn 3 chứng minh 4p+1 là hợp số
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
tìm n sao cho 4n-5 chia hết cho 5
cho p là số nguyên tố lớn hơn 3 chứng minh rằng (p-1).(p+4) chia hết cho 6
nhanh mik tick cho
cho a là số tự nhiên lớn hơn 5 và không chia hết cho 5
chứng minh rằng a\(^{8n}\)+3a\(^{4n}\)- 4 chia hết cho 5, với mọi số tự nhiên n.
bt trên sẽ là (a4n)2 + 3 . a4n - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)
mặt khác vì a là số tự nhiên , a không chia hết cho 5
=> a4n = (a2n)2 là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)
nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5
nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5
Vậy bt trên chia hết cho 5
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó