Cho 3 số nguyên a, b ,c. Chứng minh rằng nếu \(\left(a^3+b^3+c^3\right)⋮9\) thì \(abc⋮3\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
CHo 3 số nguyên a,b,c thỏa mãn \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)chia hết cho 5 Chứng minh rằng (a+b)(b+c)(c+a) chia hết cho 5
CHo 3 số nguyên a,b,c thỏa mãn \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)chia hết cho 5 Chứng minh rằng (a+b)(b+c)(c+a) chia hết cho 5
Cho ba số nguyên a,b,c thỏa mãn\(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)chia hết cho 5 Chứng minh rằng (a+b)(b+c)(c+a) chia hết cho 5
Do 5 là số nguyên tố, nên trong 3 nhân tử \(a^3+b^3;b^3+c^3;c^3+a^3\) phải có ít nhất 1 số chia hết cho 5
Không mất tính tổng quát, giả sử \(a^3+b^3⋮5\) \(\Rightarrow a;b\) đều chia hết cho 5 hoặc đều ko chia hết cho 5
Nếu \(a+b\) ko chia hết cho 5:
- a;b đồng dư khi chia 5 \(\Rightarrow\) \(a^3+b^3\) chia 5 dư lần lượt là 2;3;3;2\(\Rightarrow\) ko chia hết cho 5 (ktm)
- a;b khác số dư khi chia 5, do vai trò của a;b là như nhau và a+b ko chia hết cho 5 nên ta có các trường hợp sau:
+ a chia 5 dư 1: nếu b chia 5 dư 2 \(\Rightarrow A\) chia 5 dư -2 (ktm), nếu b chia 5 dư 3 \(\Rightarrow A\) chia 5 dư -3 (ktm)
+ a chia 5 dư 2, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 2 (ktm)
+ a chia 5 dư 3, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 3 (ktm)
\(\Rightarrow a+b\) ko chia hết cho 5 thì \(a^2+b^2-ab\) cũng ko chia hết cho 5
\(\Rightarrow a^3+b^3\) ko chia hết cho 5 (mâu thuẫn giả thiết)
Vậy \(a+b⋮5\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮5\)
Cho tam giác ABC có số đo 3 cạnh là a,b,c.
Chứng minh rằng:
a)Nếu tam giác ABC có góc A bằng 60 độ thì S(ABC)=\(\frac{\sqrt{3}}{4}\cdot\left[a^2-\left(b-c\right)^2\right]\)
b)Nếu góc A bằng 120 độ thì sao?
Chứng minh rằng nếu 3 số a,b,c lập thành 1 cấp số cộng thì:
\(3\left(a^2+b^2+c^2\right)-6\left(a-b\right)^2=\left(a+b+c\right)^2\)
Lời giải:
Nếu $a,b,c$ lập thành csc thì $b=a+m, c=a+2m$ với $m$ là công sai.
Khi đó:
$3(a^2+b^2+c^2)-6(a-b)^2=3[a^2+(a+m)^2+(a+2m)^2]-6(a-a-m)^2$
$=3(a^2+a^2+m^2+2am+a^2+4m^2+4am)-6m^2$
$=3(3a^2+5m^2+6am)=9a^2+15m^2+18am-6m^2$
$=9a^2+9m^2+18am$
$=9(a^2+m^2+2am)=9(a+m)^2=(3a+3m)^2$
$=(a+a+m+a+2m)^2=(a+b+c)^2$ (đpcm).
Cho a,b,c là 3 số nguyên dương thỏa mãn abc=1 . chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Helppp!!!!
Thanks for your helppingg!!!!
Cho các số dương a,b,c cs abc=1 Chứng minh rằng
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)
\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)
Cộng vế:
\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)
\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho các số thực dương a,b,c có abc=1 chứng minh rằng:
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)