Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Anh Thắng

Cho ba số nguyên a,b,c thỏa mãn\(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)chia hết cho 5 Chứng minh rằng (a+b)(b+c)(c+a) chia hết cho 5

Nguyễn Việt Lâm
16 tháng 3 2022 lúc 21:02

Do 5 là số nguyên tố, nên trong 3 nhân tử \(a^3+b^3;b^3+c^3;c^3+a^3\) phải có ít nhất 1 số chia hết cho 5

Không mất tính tổng quát, giả sử \(a^3+b^3⋮5\) \(\Rightarrow a;b\) đều chia hết cho 5 hoặc đều ko chia hết cho 5

Nếu  \(a+b\) ko chia hết cho 5:

- a;b đồng dư khi chia 5 \(\Rightarrow\) \(a^3+b^3\) chia 5 dư lần lượt là 2;3;3;2\(\Rightarrow\) ko chia hết cho 5 (ktm)

- a;b khác số dư khi chia 5, do vai trò của a;b là như nhau và a+b ko chia hết cho 5 nên ta có các trường hợp sau:

+ a chia 5 dư 1: nếu b chia 5 dư 2 \(\Rightarrow A\) chia 5 dư -2 (ktm), nếu b chia 5 dư 3 \(\Rightarrow A\) chia 5 dư -3 (ktm)

+ a chia 5 dư 2, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 2 (ktm)

+ a chia 5 dư 3, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 3 (ktm)

\(\Rightarrow a+b\) ko chia hết cho 5 thì \(a^2+b^2-ab\) cũng ko chia hết cho 5

\(\Rightarrow a^3+b^3\) ko chia hết cho 5 (mâu thuẫn giả thiết)

Vậy \(a+b⋮5\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮5\)


Các câu hỏi tương tự
Hoàng Anh Thắng
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Hacker Ngui
Xem chi tiết
Phạm Hà Chi
Xem chi tiết
Hoài Thu Vũ
Xem chi tiết
Thiên An
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết