Giải hệ phương trình: \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=3-xy
\(\dfrac{x^2+y^2}{x^2y^2}\)+\(\dfrac{3x^2y^2+2}{xy}\)=7
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
\(x^2y+2y+x=4xy< =>xy\left(x+3\right)=4xy< =>x+3=4< =>x=1\)
Thế x=1 vào 1 trong 2 phương trình => y=1
giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x^2}{16}+\dfrac{y^2}{4}+\dfrac{xy}{x+2y}=1\\\sqrt{x^2+16}+\dfrac{5}{2}\sqrt{x+2y}=2x+\sqrt{x^2+7}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy+x+y=3\\\dfrac{1}{x^2+2x}+\dfrac{1}{y^2+2y}=\dfrac{2}{3}\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
ĐKXĐ: x # -1/2; y # -2
\(Đặt\ \dfrac{x-1}{2x+1}=a; \dfrac{y-2}{y+2}=b \\Hệ\ tương\ đương: \\\begin{cases} a-b=1\\3a+2b=3 \end{cases} <=> \begin{cases} 3a-3b=3\\3a+2b=3 \end{cases} \\<=>\begin{cases} -5b=0\\a-b=1 \end{cases} <=>\begin{cases} b=0\\a=1 \end{cases} \\->\begin{cases} x-1=2x+1\\y-2=0 \end{cases} <=>\begin{cases} x=-2(thoả\ ĐKXĐ)\\y=2(thoả\ ĐKXĐ) \end{cases}\)
Giải các phương trình sau:
a.{\(\dfrac{3x+1}{2}-\dfrac{y-2}{3}=4\)
{\(\dfrac{x-2}{3}+\dfrac{y+1}{4}=5\)
b.{(x + 5) (y - 4) = xy
{(x + 5) (y + 12) = xy
b: Ta có: \(\left\{{}\begin{matrix}\left(x+5\right)\left(y-4\right)=xy\\\left(x+5\right)\left(y+12\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-4x+5y-20-xy=0\\xy+12x+5y+60-xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+5y=20\\12x+5y=-60\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-16y=80\\-4x+5y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-5\\-4x=20-5y=20-5\cdot\left(-5\right)=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-5\\x=-\dfrac{45}{4}\end{matrix}\right.\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html
b.
Với \(xy=0\) không là nghiệm
Với \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)
\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)
\(\Leftrightarrow5-x^2=5x-2x^2\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)
\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu...
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
giải hệ phương trình:
\(\left\{{}\begin{matrix}xy-x-y=5\\\dfrac{1}{x^2-2x}+\dfrac{1}{y^2-2y}=\dfrac{2}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy-x-y+1=6\\\dfrac{1}{\left(x-1\right)^2-1}+\dfrac{1}{\left(y-1\right)^2-1}=\dfrac{2}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-1\right)-\left(y-1\right)=6\\\dfrac{1}{\left(x-1\right)^2-1}+\dfrac{1}{\left(y-1\right)^2-1}=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\dfrac{1}{\left(x-1\right)^2-1}+\dfrac{1}{\left(y-1\right)^2-1}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a.b=6\Rightarrow b=\dfrac{6}{a}\\\dfrac{1}{a^2-1}+\dfrac{1}{b^2-1}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{a^2-1}+\dfrac{1}{\dfrac{36}{a^2}-1}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{a^2-1}+\dfrac{a^2}{36-a^2}=\dfrac{2}{3}\Rightarrow a^4-16a^2+36=0\)
\(\Rightarrow\left[{}\begin{matrix}a^2=8+2\sqrt{7}\\a^2=8-2\sqrt{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\pm\sqrt{8+2\sqrt{7}}=\pm\left(\sqrt{7}+1\right)\\a=\pm\sqrt{8-2\sqrt{7}}=\pm\left(\sqrt{7}-1\right)\end{matrix}\right.\)
\(x=a+1\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{7}\\x=-\sqrt{7}\\x=\sqrt{7}\\x=2-\sqrt{7}\end{matrix}\right.\) \(\Rightarrow y=\dfrac{6}{a}+1=\left[{}\begin{matrix}\sqrt{7}\\2-\sqrt{7}\\2+\sqrt{7}\\-\sqrt{7}\end{matrix}\right.\)
Vậy hệ đã cho có 4 cặp nghiệm thỏa mãn:
\(\left(x;y\right)=\left(2+\sqrt{7};\sqrt{7}\right)\),\(\left(-\sqrt{7};2-\sqrt{7}\right)\),\(\left(\sqrt{7};2+\sqrt{7}\right)\) ,\(\left(2-\sqrt{7};-\sqrt{7}\right)\)
1.(\(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\)) :(\(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\))