Tìm x
( 2,5 x + 5 ). ( -3 + 15x ) = 0
Tìm x trong các tỉ lệ thức sau:
a) 2,5 : 4x = 0,5 : 0,2
b) 1 5 x : 3 = 2 3 : 0 , 25
c) x - 6 x + 4 = 2 7
d) x + 5 : 2 1 2 = 40 : x + 5
Tìm x a)(5x-3)(3x+1)-(15x+1)(x-2)=0 b)x²+(x+5)(x-3)-25=0
\(a,\left(5x-3\right)\left(3x+1\right)-\left(15x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left(15x^2-4x-3\right)-\left(15x^2-29x-2\right)=0\)
\(\Rightarrow15x^2-4x-3-15x^2+29x+2=0\)
\(\Rightarrow25x-1=0\)
\(\Rightarrow x=\dfrac{1}{25}\)
\(----------\)
\(b,x^2+\left(x+5\right)\left(x-3\right)-25=0\)
\(\Rightarrow x^2+x^2+2x-15-25=0\)
\(\Rightarrow2x^2+2x=40\)
\(\Rightarrow2x\left(x+1\right)=40\)
\(\Rightarrow x\left(x+1\right)=20\)
\(\Rightarrow x;x+1\) là ước của 20
mà \(x;x+1\) là hai số nguyên liên tiếp \(\left(x\in Z\right)\)
nên \(x\left(x+1\right)=4.5=\left(-5\right).\left(-4\right)=20\)
\(\Rightarrow x\in\left\{4;-5\right\}\)
a: =>15x^2+5x-9x-3-15x^2+30x-x+2=0
=>25x-1=0
=>x=1/25
b: =>x^2+x^2+2x-15-25=0
=>2x^2+2x-40=0
=>x^2+x-20=0
=>(x+5)(x-4)=0
=>x=4 hoặc x=-5
Tìm x, biết:
a) 8 x 3 - 50x = 0;
b) 2(x + 3)- x 2 - 3x = 0;
c) 6 x 2 - 15x - (2x - 5)(2x + 5) = 0.
Tìm x:
-5(3x-7) - ( -15x+3) - ( 12 -x ) =-4
-3(4x-2) - ( -12+8) - (-x)=0
-5(3x-7) - ( -15x+3) - ( 12 -x ) =-4
=>-15x+35+15x-3-12+x=-4
=>20+x=-4
=>x=-4-20
=>x=-24
-3(4x-2) - ( -12+8) - (-x)=0
=>-12x+6+12-8+x=0
=>-11x+10=0
=>-11x=0-10
=>-11x=-10
=>11x=10
=>x=10:11=\(\frac{10}{11}\)
Tìm x
(1 - 2/3)x (3/4x + 1/2) =0
2/3 - 19/15x = -3/5
Tìm x biết
a. 3+x= 5
b. 15x +11= 2727:27
c | x+2|=0
a x=5-3
x=2
b 15x+11=101
15x=101-11
15x=90
x = 90:15
x = 6
c x+2=0
x=0-2
x=-2
Tìm x
a)3x(x+5)-2(x+5)=0
b)2(x+3)-15x-5x2
c)x2-4x=5
a: =>(x+5)(3x-2)=0
=>x=-5 hoặc x=2/3
b: Đề thiếu rồi bạn
c: \(\Leftrightarrow x^2-4x-5=0\)
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
Tìm x
a)3x(x+5)-2(x+5)=0
b)2(x+3)-15x-5x2
c)x2-4x=5
Tìm x biết: a, 7x(x-20)-x+20=0 b, x^3-15x=0
a) Ta có: \(7x\left(x-20\right)-x+20=0\)
\(\Leftrightarrow\left(x-20\right)\left(7x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=\dfrac{1}{7}\end{matrix}\right.\)
b) Ta có: \(x^3-15x=0\)
\(\Leftrightarrow x\left(x-\sqrt{15}\right)\left(x+\sqrt{15}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{15}\\x=-\sqrt{15}\end{matrix}\right.\)