Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Kiều Trang
Xem chi tiết
Thanh Ngân
25 tháng 7 2018 lúc 11:26

\(\left(x^2-5\right)\left(x^2+1\right)=0\)

<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)

câu còn lại tương tự nha

Bình Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 20:12

a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)

=>(x+5)(x-3)+8=x^2-1

=>x^2+2x-15+8=x^2-1

=>2x-7=-1

=>x=3(loại)

b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)

=>(x-4)(x+1)+x^2+3+5(x-1)=0

=>x^2-3x-4+x^2+3+5x-5=0

=>2x^2+2x-6=0

=>x^2+x-3=0

=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)

e: =>x^2-2x+1+2x+2=5x+5

=>x^2+3=5x+5

=>x^2-5x-2=0

=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)

g: (x-3)(x+4)*x=0

=>x=0 hoặc x-3=0 hoặc x+4=0

=>x=0;x=3;x=-4

binhminh
Xem chi tiết
Trí Tiên
30 tháng 8 2020 lúc 21:22

a) tính thường

b) \(\left(x-1\right)\left(x+2\right)< 0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow1< x< -2\left(ktm\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\left(tm\right)\)

vậy

c)\(\left(x+\frac{3}{5}\right)\left(x+1\right)< 0\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Leftrightarrow-1< x< -\frac{3}{5}\left(tm\right)\)

d) \(\left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Leftrightarrow x>\frac{1}{3}\left(tm\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\Leftrightarrow x< \frac{-2}{5}\left(tm\right)\)

vậy ...

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 8 2020 lúc 21:24

a) 5/2 - x + 4/5 = 2/3 + 4/7

<=> 33/10 - x = 26/21

<=> x = 433/210

b) ( x - 1 )( x + 2 ) < 0 ( cái " x " kia là nhân à :v )

Xét 2 trường hợp

1.\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\)( loại )

2. \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Rightarrow-2< x< 1\)

Vậy -2 < x < 1

c) ( x + 3/5 )( x + 1 ) < 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Rightarrow-1< x< -\frac{3}{5}\)

2. \(\hept{\begin{cases}x+\frac{3}{5}>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-\frac{3}{5}\\x< -1\end{cases}}\)( loại )

Vậy -1 < x < -3/5

d) ( x - 1/3 )( x + 2/5 ) > 0

Xét hai trường hợp :

1.\(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Rightarrow x>\frac{1}{3}\)

2.\(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\Rightarrow}x< -\frac{2}{5}\)

Vây \(\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\)

Khách vãng lai đã xóa
nguyen van duc
Xem chi tiết
Thắng Nguyễn
6 tháng 7 2016 lúc 17:43

Bài 1:

a)-x^2+4x-5

=-(x2-4x+5)<0 với mọi x

=>-x^2+4x-5<0 với mọi x

b)x^4+3x^2+3

\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x

=>x^4+3x^2+3>0 với mọi x

c) bn xét từng th ra

Bài 2:

a)9x^2-6x-3=0

=>3(3x2-2x-1)=0

=>3x2-2x-1=0

=>3x2+x-3x-1=0

=>x(3x+1)-(3x+1)=0

=>(x-1)(3x+1)=0

b)x^3+9x^2+27x+19=0

=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)

Với x+1=0 =>x=-1Với x2+8x+19 =>vô nghiệm

c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3

=>x3-25x-x3-8=3

=>-25x-8=3

=>-25x=1

=>x=-11/25

Thắng Nguyễn
6 tháng 7 2016 lúc 17:46

mk sửa 1 tí ở dấu => thứ 2 từ dưới lên là

=>-25x=11

Đặng Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2022 lúc 19:53

a: =>3x-6-5=2x+6

=>3x-11=2x+6

hay x=17

b: (x+5)(x2-4)=0

=>(x+5)(x+2)(x-2)=0

hay \(x\in\left\{-5;-2;2\right\}\)

c: \(\left(x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

hay \(x\in\left\{-1;2;-2\right\}\)

d: \(\left(4-x\right)\left(x+1\right)\ge0\)

=>(x-4)(x+1)<=0

hay -1<=x<=4

Vũ Thảo Anh
Xem chi tiết
kethattinhtrongmua
20 tháng 12 2020 lúc 20:14

câu này 4(x 2) x^2 2x=0

là (x-2) hay (x+2) a

kethattinhtrongmua
20 tháng 12 2020 lúc 20:28
Nguyễn Lê Phước Thịnh
20 tháng 12 2020 lúc 20:30

Bạn vào biểu tượng đầu tiên trên thanh công cụ để ghi công thức rõ hơn nhé

Nguyen Minh Anh
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 11 2021 lúc 10:34

a) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

c) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

d) \(\Rightarrow\left(x-7\right)\left(3x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)

nthv_.
20 tháng 11 2021 lúc 10:34

\(a,\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\\ c,\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)

Trịnh Thành Long
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 8 2023 lúc 15:47

a/

\(x^3-4x^2-\left(x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)

b/

\(x^5-9x=0\)

\(\Leftrightarrow x\left(x^4-9\right)=x\left(x^2-3\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

c/

\(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow x^4\left(x-1\right)^2-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^4-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{2}\end{matrix}\right.\)

Trịnh Thành Long
8 tháng 8 2023 lúc 15:36

Sos

 

Trịnh Thành Long
8 tháng 8 2023 lúc 15:46

giúp với mn

 

Chang Đinh
Xem chi tiết
Chóii Changg
20 tháng 2 2021 lúc 8:31

a)(x+5)(2x-3)=0

=> x+5=0 hoặc 2x-3=0

=>x=-5 hoặc x=3/2

b)(x^2+1)(6x+3)=0

=>x^2+1=0 hoặc 6x+3=0

=>x=-1 hoặc x=-1/2

c)2(x+3)(x-4)=0

=>2x+6=0 hoặc x-4=0

=>x=-3 hoặc x=4

Nguyễn đăng long
20 tháng 2 2021 lúc 21:59

a)(x+5)(2x-3)=0

⇔x+5=0 hoặc 2x-3=0

1.x+5=0⇔x=-5

2.2x-3=0⇔2x=3⇔x=3/2

phương trình có 2 nghiệm:x=-5 và x=3/2

b)(x2+1)(6x+3)=0

⇔x2+1=0 hoặc 6x+3=0

1.x2+1=0⇔x=1

2.6x+3=0⇔6x=-3⇔x=-1/2

phương trình có 2 nghiệm:x=1 và x=-1/2

c)2(x+3)(x-4)=0

⇔2x+6=0 hoặc x-4=0

1.2x+6=0⇔2x=-6⇔x=3

2.x-4=0⇔x=4

phương trình có 2 nghiệm:x=3 và x=4

Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 22:32

a) Ta có: \(\left(x+5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-5;\dfrac{3}{2}\right\}\)

b) Ta có: \(\left(x^2+1\right)\left(6x+3\right)=0\)

mà \(x^2+1>0\forall x\)

nên 6x+3=0

\(\Leftrightarrow6x=-3\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

c) Ta có: \(2\left(x+3\right)\left(x-4\right)=0\)

mà 2>0

nên (x+3)(x-4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

Vậy: S={-3;4}

Kaijo
Xem chi tiết
Hoàng Ngọc Anh
7 tháng 5 2020 lúc 21:01

a)

\(\left(5x+3\right)\cdot\left(x^2+4\right)\cdot\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x+3=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{5}\\x=4\end{matrix}\right.\)

b)

\(\left(4x-1\right)\cdot\left(x-3\right)-\left(x-2\right)\cdot\left(5x+2\right)=0\\ \Leftrightarrow4x^2-12x-x+3-5x^2-2x+10x+4=0\\ \Leftrightarrow-x^2-5x+7=0\\ \Rightarrow x=\left[{}\begin{matrix}-\frac{5+\sqrt{53}}{2}\\-\frac{5-\sqrt{53}}{2}\end{matrix}\right.\)

c)

\(\left(x+3\right)\cdot\left(x-5\right)+\left(x+3\right)\cdot\left(3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(x-5+3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(4x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\4x-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=\frac{9}{4}\end{matrix}\right.\)

d)

\(\left(x+6\right)\cdot\left(3x-1\right)+x^2-36=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x^2-36\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x+6\right)\cdot\left(x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1+x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(4x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)

e)

\(0.75x\cdot\left(x+5\right)=\left(x+5\right)\cdot\left(3-1.25x\right)\\ \Leftrightarrow0.75x\cdot\left(x+5\right)-\left(x+5\right)\cdot\left(3-1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(0.75x-3+1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)