Các bạn ơi! Giúp mk câu này với.....
Chứng minh n^3 +5n chia hết cho 6 với mọi số nguyên n.
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Giúp em với các anh chị ơi ? chứng minh: n2 + 5n + 16 không chia hết cho 169, với mọi n nguyên dương
Ta có: c|a => Tồn tại số n để: a = nc
b|a => Tồn tại số n để a = mb
=> nc = mb => nc \(⋮\)b mà (c;b) = 1 => n \(⋮\)b
=> n = b.k
=> a = nc = bck
=> a \(⋮\)bc hay bc|a
Chứng minh n3+5n chia hết cho 6 với mọi số nguyên n
n3 + 5n = n3 - n + 6n = n( n2 - 1 ) + 6n = n(n - 1)( n + 1) + 6n
n( n - 1 )( n + 1 ) chia hết cho 6 ; 6n chia hết cho 6
suy ra đpcm
Ta có: \(n^3+5n\)
\(\Leftrightarrow\)\(n^3-n+6n\)
\(\Leftrightarrow\) \(n(n^2-1)+6n\)
\(\Leftrightarrow\) \(n\left(n-1\right)\left(n+1\right)+6n\)
\(Do\hept{\begin{cases}n\left(n-1\right)\left(n+1\right)⋮6\\6n⋮6\end{cases}}\)
\(\Rightarrow\) \(n\left(n-1\right)\left(n+1\right)+6n⋮6\)
\(\Leftrightarrow\)\(n^3+5n⋮6\left(ĐPCM\right)\)
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
Chứng minh rằng với mọi số nguyên dương n ta đều có n3 + 5n chia hết cho 6
Ta co : \(n^3+5n=n^3-n+6n=n\left(n^2-1\right)+6n=n\left(n-1\right)\left(n+1\right)+6n\)
Vi n la so nguyen duong nen suy ra : Tich cua ba so nguyen duong lien tiep :
\(n-1,n,n+1\) chia het cho 2 va 3
\(n\left(n-1\right)\left(n+1\right)\) chia het cho 6
\(\Rightarrow n^3+5n\) chia het cho 6 (dpcm)
**** nhe
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
bài 5:Gọi a là số nguyên đầu tiên trong dãy 3 số nguyên liên tiếp. Ta có dãy số nguyên liên tiếp là a, a+1, a+2. Tổng lập phương của 3 số nguyên liên tiếp là: a^3 + (a+1)^3 + (a+2)^3 = a^3 + (a^3 + 3a^2 + 3a + 1) + (a^3 + 6a^2 + 12a + 8) = 3a^3 + 9a^2 + 15a + 9 = 3(a^3 + 3a^2 + 5a + 3) = 3(a(a^2 + 3a + 3) + 3(a + 1)) Ta thấy a(a^2 + 3a + 3) là một số nguyên, và 3(a + 1) cũng là một số nguyên. Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9.
bài 6:a) Để chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6, ta cần chứng minh rằng n(n + 1)(2n + 1) chia hết cho cả 2 và 3. - Đầu tiên, ta chứng minh rằng n(n + 1) chia hết cho 2. Ta biết rằng một trong hai số liên tiếp n và n + 1 phải là số chẵn. Vì vậy, tích của chúng chia hết cho 2. - Tiếp theo, ta chứng minh rằng n(n + 1)(2n + 1) chia hết cho 3. Ta biết rằng một trong ba số liên tiếp n, n + 1 và 2n + 1 phải chia hết cho 3. Vì vậy, tích của chúng chia hết cho 3. Vậy, n(n + 1)(2n + 1) chia hết cho cả 2 và 3, nên nó chia hết cho 6. b) Để chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 120, ta cần chứng minh rằng n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8. - Đầu tiên, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 2. Ta biết rằng n^5 chia hết cho 2 vì n^5 = n^4 * n chia hết cho 2. Tương tự, n^3 cũng chia hết cho 2 vì n^3 = n^2 * n chia hết cho 2. Và n cũng chia hết cho 2. Vậy, n^5 - 5n^3 + 4n chia hết cho 2. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 3. Ta biết rằng n^5 chia hết cho 3 vì n^5 = n^4 * n chia hết cho 3. Tương tự, n^3 cũng chia hết cho 3 vì n^3 = n^2 * n chia hết cho 3. Và n cũng chia hết cho 3. Vậy, n^5 - 5n^3 + 4n chia hết cho 3. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 4. Ta biết rằng n^5 chia hết cho 4 vì n^5 = n^4 * n chia hết cho 4. Tương tự, n^3 cũng chia hết cho 4 vì n^3 = n^2 * n chia hết cho 4. Và n cũng chia hết cho 4. Vậy, n^5 - 5n^3 + 4n chia hết cho 4. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 5. Ta biết rằng n^5 chia hết cho 5 vì n^5 = n^4 * n chia hết cho 5. Tương tự, n^3 cũng chia hết cho 5 vì n^3 = n^2 * n chia hết cho 5. Và n cũng chia hết cho 5. Vậy, n^5 - 5n^3 + 4n chia hết cho 5. - Cuối cùng, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 8. Ta biết rằng n^5 chia hết cho 8 vì n^5 = n^4 * n chia hết cho 8. Tương tự, n^3 cũng chia hết cho 8 vì n^3 = n^2 * n chia hết cho 8. Và n cũng chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8, nên nó chia hết cho 120.
bài 7:Để chứng minh rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n, ta sẽ sử dụng phương pháp quy nạp. Bước 1: Kiểm tra đẳng thức đúng với n = 1: 1^4 + 6(1)^3 + 11(1)^2 + 6(1) = 1 + 6 + 11 + 6 = 24, là số chia hết cho 24. Bước 2: Giả sử đẳng thức đúng với n = k, tức là k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24. Bước 3: Chứng minh đẳng thức cũng đúng với n = k + 1, tức là (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) chia hết cho 24. Ta có: (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 6(k^3 + 3k^2 + 3k + 1) + 11(k^2 + 2k + 1) + 6(k + 1) = (k^4 + 6k^3 + 11k^2 + 6k) + (4k^3 + 6k^2 + 4k + 1 + 6k^3 + 18k^2 + 18k + 6 + 11k^2 + 22k + 11 + 6k + 6) = (k^4 + 6k^3 + 11k^2 + 6k) + (10k^3 + 35k^2 + 32k + 18) = (k^4 + 6k^3 + 11k^2 + 6k) + 2(5k^3 + 17k^2 + 16k + 9) Vì k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24 theo giả thiết quy nạp, và 5k^3 + 17k^2 + 16k + 9 cũng chia hết cho 24 (có thể chứng minh bằng cách sử dụng phương pháp quy nạp tương tự), nên tổng của hai số này cũng chia hết cho 24. Vậy, theo nguyên lý quy nạp, ta có thể kết luận rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n.
bài 8:a) Ta có: n^2 + 4n + 3 = (n + 1)(n + 3) Vì n là số tự nhiên lẻ nên n + 1 và n + 3 đều là số chẵn. Vậy (n + 1)(n + 3) chia hết cho 2. Ta cũng thấy rằng n + 1 và n + 3 có tích là một số chẵn. Vậy (n + 1)(n + 3) chia hết cho 4. Do đó, (n + 1)(n + 3) chia hết cho 8. b) Ta có: n^3 + 3n^2 - n - 3 = (n - 1)(n^2 + 4n + 3) Vì n là số tự nhiên lẻ nên n - 1 là số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 2. Ta cũng thấy rằng n - 1 và n^2 + 4n + 3 có tích là một số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 4. Do đó, (n - 1)(n^2 + 4n + 3) chia hết cho 8. c) Ta có: n^12 - n^8 - n^4 + 1 = (n^12 - n^8) - (n^4 - 1) = n^8(n^4 - 1) - (n^4 - 1) = (n^8 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)^2 = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n^2 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) Vì n là số tự nhiên lẻ nên n + 1 và n - 1 đều là số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 2. Ta cũng thấy rằng (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) có tích là một số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 4. Do đó, (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 8. Vậy ta đã chứng minh được các phần a), b), c).
bài 9:a) Ta có p > 3 là số nguyên tố, suy ra p là số lẻ. Vì vậy, p^2 là số lẻ. Ta có thể biểu diễn p^2 - 1 dưới dạng (p - 1)(p + 1). Vì p là số lẻ, nên p - 1 và p + 1 đều là số chẵn. Do đó, (p - 1)(p + 1) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p là số nguyên tố, nên p không chia hết cho 3. Do đó, p - 1 và p + 1 đều không chia hết cho 3. Vậy, (p - 1)(p + 1) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - 1 chia hết cho 2 x 3 = 6. Vì p^2 - 1 chia hết cho 6, nên p^2 - 1 chia hết cho 2 x 3 x 4 = 24. b) Ta có p > 3 và q > 3 là hai số nguyên tố, suy ra p và q đều là số lẻ. Ta có thể biểu diễn p^2 - q^2 dưới dạng (p - q)(p + q). Vì p và q là số lẻ, nên p - q và p + q đều là số chẵn. Do đó, (p - q)(p + q) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p và q là số nguyên tố, nên p không chia hết cho 3 và q không chia hết cho 3. Do đó, p - q và p + q đều không chia hết cho 3. Vậy, (p - q)(p + q) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - q^2 chia hết cho 2 x 3 = 6. Vì p^2 - q^2 chia hết cho 6, nên p^2 - q^2 chia hết cho 2 x 3 x 4 = 24.
bài 10:Ta có: 11n = 12n - n Vậy ta cần chứng minh rằng n^3 + 12n - n chia hết cho 6 với mọi số n thuộc Z. Ta thấy n^3 + 12n - n = n(n^2 + 12 - 1) = n(n^2 + 11) Để chứng minh n(n^2 + 11) chia hết cho 6, ta cần chứng minh rằng n(n^2 + 11) chia hết cho cả 2 và 3. - Chứng minh n(n^2 + 11) chia hết cho 2: Nếu n chẵn, thì n chia hết cho 2, n^2 cũng chia hết cho 2, nên n(n^2 + 11) chia hết cho 2. Nếu n lẻ, thì n chia hết cho 2, n^2 chia hết cho 4, nên n(n^2 + 11) chia hết cho 2. - Chứng minh n(n^2 + 11) chia hết cho 3: Nếu n chia hết cho 3, thì n(n^2 + 11) chia hết cho 3. Nếu n không chia hết cho 3, ta có 3 trường hợp: + n = 3k + 1, thì n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1, nên n^2 + 11 = 3(3k^2 + 2k + 3) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k + 2, thì n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1, nên n^2 + 11 = 3(3k^2 + 4k + 4) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k, thì n^2 = 9k^2, nên n^2 + 11 = 9k^2 + 11 = 3(3k^2 + 3) + 2, n(n^2 + 11) chia hết cho 3. Vậy ta đã chứng minh được rằng n(n^2 + 11) chia hết cho cả 2 và 3, nên n(n^2 + 11) chia hết cho 6 với mọi số n thuộc Z.
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
A =(a3 -a) chia hết cho 6 với mọi a thuộc N
B=(a3 +5a) chia hết cho 6 với mọi a thuộc N
C=(a3+11a) chia hết cho 6 với mọi a thuộc N
D=(a3 - 19a) chia hết cho 6 với mọi a thuộc N
Các bạn ơi giúp mk với ai giúp mk thì mk tick cho
A = a3 - a
A = a.(a2 - 1)
A = a.(a-1).(a+1)
A = (a-1).a.(a+1)
Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3
Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6
Câu A lm đc thì các câu B,C,D trở nên rất đơn giản
B = a3 - a + 6a
Do a3 - a chia hết cho 6, 6a chia hết cho 6
=> B chia hết cho 6
C = a3 + 11a
C = a3 - a + 12a
Do a3 - a chia hết cho 6, 12a chia hết cho 6
=> C chia hết cho 6
D = a3 - 19a
D = a3 - a - 18a
Do a3 - a chia hết cho 6, 18a chia hết cho 6
=> D chia hết cho 6