Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cảnh Nguyễn Đức
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Ngân Hà
11 tháng 11 2016 lúc 16:59

Bài này khó quá!

Mình chỉ giải được câu a thôi!

Bạn tự vẽ hình ghi gt kl nha!

a) Xét 2 tam giác ABI và ADI có:

AI là cạnh chung

Góc A1 = góc A2 (gt)

AB = AD (gt)

Suy ra tam giác ABI = tam giác ADI (c-g-c)

Suy ra IB = ID (2 cạnh tương ứng)

 

Phạm Đình Tâm
11 tháng 11 2016 lúc 21:45

b) Ta co: goc BIE=goc DIC(doi dinh)

=> goc AIE=goc AIB+goc BIE=goc AID+goc DIC=gocAIC

Xet 2 tam giac AIE va tam giac AIC, ta co:

goc EAI=goc CAI = 45o

chung AI

goc AIE= goc AIC(cmt)

=> tam giac AIE=tam giac AIC (g.c.g)

=> AC = AE

Phạm Đình Tâm
11 tháng 11 2016 lúc 22:05

c) Ta co:4ABC=5ACB vaABC+ACB=90o

=>ABC/5=ACB/4=>ABC + ACB/5 + 4 = 90/9=10

=>ABC=10.5=50, ACB=10.4=40

Vi tam giac AEC can tai A nen AEC=ACE=90/2=45o

ma ACE= ACB+BCE=45o

=40o+BCE =45o

=>BCE=45-40=5o

Ki hieu"o" la "do"

Nguyễn Thảo
Xem chi tiết
Thu Thao
19 tháng 12 2020 lúc 21:11

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

Đõ Phương Thảo
19 tháng 12 2020 lúc 21:20

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

Trương Vân Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 13:14

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

Đinh Hà Linh
Xem chi tiết
Uyên  Thy
3 tháng 1 2022 lúc 23:49

 a, Xét ΔABI và ADI ta có 

AI là cạnh chung

A1^ = A2^ 

AB = AD (gt)

⇒ 2 tam giác trên bằng nhau

⇒ IB = ID ( cạnh tương ứng)

b, Ta có BIE^=DIC^ (đối đỉnh)

⇒ AIE^ = AIB^ + BIE^  = AID^ +AIC^ 

Xét ΔAIE VÀ AIC

EAI^=CAI^ =45

chung Ai

⇒ 2 tam giác bằng nhau

⇒ AC = AE

pham chau anh
Xem chi tiết
Thanh Hoàng Thanh
23 tháng 1 2022 lúc 22:10

a) Xét tam giác ABD: AB = AD (gt). 

=> Tam giác ABD cân tại A.

Mà AH là phân giác góc BAD (gt).

=> AH là trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của cạnh BD (đpcm).

Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 22:11

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

tuấn anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 22:11

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

Nguyen Thi Xuan
Xem chi tiết
Tường Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 15:35

a: Xét ΔABI và ΔADI có

AB=AD

\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

Suy ra: BI=DI

02.HảiAnh Bùi Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 22:23

a: Xét ΔAIK vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIK}=\widehat{DIC}\)

Do đó: ΔAIK=ΔDIC

Suy ra: IK=IC

hay ΔIKC cân tại I

b: Xét ΔBKC có BA/AK=BD/DC

nên AD//KC

c: Ta có: BK=BC

nên B nằm trên đường trung trực của KC(1)

ta có: IK=IC

nên I nằm trên đường trung trực của KC(2)

Ta có: MK=MC

nên M nằm trên đường trung trực của KC(3)

Từ (1), (2)và (3) suy ra B,I,M thẳng hàng