Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi Nhí Nhảnh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2018 lúc 6:17

b) Ta có:

S A O B = 1/2 OA.OB = 1/2 |-4|.4 = 8 ( c m 2 )

Đoàn Thanh Vân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 2 2017 lúc 2:53

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.

Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

        2x + 2 = x

=> x = -2 => y = -2

Suy ra tọa độ giao điểm là A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

- Tọa độ điểm C:

Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

    x = 2 => y = 2 => tọa độ C(2; 2)

- Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)

Để học tốt Toán 9 | Giải bài tập Toán 9

Huy Hoang
2 tháng 2 2021 lúc 21:57

a) 1 0 2 y x C y = x y=2x+2 H B -1 2

+) y = 2x + 2

Cho x = 0 => y = 2

                => ( 0 ; 2 )

        y = 0 => x = -1

                => ( -1 ; 0 )

- Đồ thị hàm số y = x đi qua 2 điểm có tọa độ ( 0 ; 0 )

- Đồ thị hàm số y = 2x + 2 đi qua 2 điểm có tọa độ ( 0 ; 2 ) và ( -1 ; 0 )

b) Hoành độ điểm A là nghiệm của PT sau :

x = 2x + 2

<=> 2x - x = -2

<=> x = -2

=> y = -2 

Vậy A ( -2 ; -2 )

c) Tung độ điểm C = 2 => hoành độ điểm C là x = 2

=> C ( 2 ; 2 )

Từ A hạ \(AH\perp BC\), ta có : AH = 4cm

                                                 BC = 2cm

Vậy : ..............

\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4.2=4\left(cm^2\right)\)

Khách vãng lai đã xóa
Cỏ dại
Xem chi tiết
Diễm Diễm
Xem chi tiết
Dương Bảo Ngọc
Xem chi tiết
Tuyến Phùng
Xem chi tiết
Chinh
31 tháng 5 2016 lúc 13:46

Từ Phương trình hoành độ giao điểm sẽ tìm được tọa độ của A ( x1,y1) và B (x2 , y2)

Bạn Vẽ hình . Gọi M là hình chiếu của A trên Ox , N là Hình chiếu của B trên Ox . tiếp theo bạn tính lần lượt các diện tích sau.:

1. S tam giác AMO vuông tại M

2. S tam giác BNO vuông tại N 

3. S Hình Thang  AMNB .

=> S tam giác AOB = S Hình thang AMNB -  ( S tam giác AMO + S tam giác BNO)

Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 4:47

a:

loading...

b: phương trình hoành độ giao điểm là:

4x+2=2x-2

=>4x-2x=-2-2

=>2x=-4

=>x=-2

Thay x=-2 vào y=4x+2, ta được:

\(y=4\cdot\left(-2\right)+2=-8+2=-6\)

Vậy: M(-2;-6)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\4x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)

Vậy: B(1;0); A(-1/2;0)

d: M(-2;-6); B(1;0); A(-1/2;0)

\(MA=\sqrt{\left(-\dfrac{1}{2}+2\right)^2+\left(0-6\right)^2}=\dfrac{3\sqrt{17}}{2}\)

\(MB=\sqrt{\left(1+2\right)^2+\left(0+6\right)^2}=3\sqrt{5}\)

\(AB=\sqrt{\left(-\dfrac{1}{2}-1\right)^2+\left(0-0\right)^2}=\dfrac{3}{2}\)

Chu vi tam giác MAB là:

\(C_{MAB}=MA+MB+AB=\dfrac{3}{2}+3\sqrt{5}+\dfrac{3\sqrt{17}}{2}\)

Xét ΔMAB có \(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{9}{\sqrt{85}}\)

=>\(sinAMB=\sqrt{1-\left(\dfrac{9}{\sqrt{85}}\right)^2}=\dfrac{2}{\sqrt{85}}\)

Diện tích tam giác MAB là:

\(S_{AMB}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB=\dfrac{1}{2}\cdot\dfrac{3\sqrt{17}}{2}\cdot3\sqrt{5}\cdot\dfrac{2}{\sqrt{85}}\)

\(=\dfrac{9}{2}\)

 

Dương Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 22:51

a: 

loading...

b:

Sửa đề: Tính diện tích tam giác ABO

tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x+2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

Vậy: A(-2;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)

Vậy: B(0;2)

O(0;0) A(-2;0); B(0;2)

\(OA=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{4}=2\)

\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{4}=2\)

\(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

Vì \(OA^2+OB^2=AB^2\)

nên ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)

c: Sửa đề: Tính góc tạo bởi đường thẳng với trục ox

Gọi \(\alpha\) là góc tạo bởi đường thẳng y=x+2 với trục Ox

\(tan\alpha=a=1\)

=>\(\alpha=45^0\)