Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2019 lúc 4:05

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE (tính chất hình chữ nhật)

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

A H 2  = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)

Vậy DE = 6 (cm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2017 lúc 16:02

Tam giác BDH vuông tại D có DM là đường trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tiểu Anh
Xem chi tiết
Tiểu Anh
23 tháng 8 2021 lúc 17:28

giúp em với ạ.Em cảm ơn nhiềuu

 

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 23:12

b: Ta có: BC=BH+HC

nên BC=4+9

hay BC=13cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)

Tiểu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 21:12

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2017 lúc 3:43

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

Dương Trần Quang Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 22:46

a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=NM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

mà AH=NM

nên MN=6cm

Cô Hoàng Huyền
Xem chi tiết
địt con mẹ mày
20 tháng 3 2021 lúc 10:20

anh đây đẹp troai, chim dài mét hai !

Khách vãng lai đã xóa
Phạm Đức Tấn Phát
27 tháng 9 2021 lúc 11:09

a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có: 
AH^2=BH.HC=4.9=36\Rightarrow AH=6\left(cm\right).
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
\widehat{ODM}=\widehat{OHM}=90^o
Suy ra \Delta DMO=\Delta HMO (ch - cgv).
Vì vậy DM=MH. (1) 
Từ đó suy ra tam giác MDH cân tại M hay \widehat{MDH}=\widehat{DHM}.
Có \widehat{BDM}+\widehat{MDH}=90^o,\widehat{DBH}+\widehat{DHB}=90^o.
Suy ra \widehat{MDB}=\widehat{DBM}. Vì vậy tam giác BDM cân tại M hay MB = MD.  (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
\dfrac{DE.\left(DM+EN\right)}{2}=\dfrac{6\left(2+4,5\right)}{2}=19,5\left(cm^2\right)

Khách vãng lai đã xóa
Nguyễn Anh Tú
27 tháng 9 2021 lúc 20:36

a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có: 
AH^2=BH.HC=4.9=36\Rightarrow AH=6\left(cm\right).
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
\widehat{ODM}=\widehat{OHM}=90^o
Suy ra \Delta DMO=\Delta HMO (ch - cgv).
Vì vậy DM=MH. (1) 
Từ đó suy ra tam giác MDH cân tại M hay \widehat{MDH}=\widehat{DHM}.
Có \widehat{BDM}+\widehat{MDH}=90^o,\widehat{DBH}+\widehat{DHB}=90^o.
Suy ra \widehat{MDB}=\widehat{DBM}. Vì vậy tam giác BDM cân tại M hay MB = MD.  (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
\dfrac{DE.\left(DM+EN\right)}{2}=\dfrac{6\left(2+4,5\right)}{2}=19,5\left(cm^2\right).

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Trần Huỳnh Cẩm Hân
17 tháng 6 2017 lúc 10:14

search : https://hoc24.vn/hoi-dap/question/56467.html

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 11 2017 lúc 16:46

Xét hai tam giác vuông ABH và CAH có:

∠ ABH = ∠ CAH (cùng phụ với góc  ∠ BAH)

Do đó △ ABH đồng dạng  △ CAH (g.g).

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ A H 2  = BH. CH = 4.9 = 36 ⇒ AH = 6(cm)

Mặt khác, HD ⊥ AB và HE ⊥ AC nên ADHE là hình chữ nhật.

Suy ra: DE = AH = 6 (cm)

Minh
Xem chi tiết