Cho \(A_n=\dfrac{1}{\left(2n+1\right).\sqrt{2n-1}}\) . So \(A_1+A_2+...+A_n\) với 1
Cho \(A_n=\dfrac{1}{\left(2n+1\right)\sqrt{2n-1}},\forall n\in N\text{*}\)
CMR: \(A_1+A_2+...+A_n< 1\)
\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)
\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)
\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)
\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)
Cho \(a_n=\dfrac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\) với n=1,2,3,..,2005
cm: \(a_1+a_2+...+a_n< \dfrac{2005}{2007}\)
cho dãy số:
\(a_1=1,a_2=1+\dfrac{1}{3},...,a_n=1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n-1}\)
cmr:\(\dfrac{1}{a_1^2}+\dfrac{1}{3a_2^2}+...+\dfrac{1}{\left(2n-1\right)a_n^2}< 2\)
cho dãy số :\(a_1=1,a_2=1+\dfrac{1}{3},.....,a_n=1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n-1}\)
cmr:
\(\dfrac{1}{a_1^2}+\dfrac{1}{3a_2^2}+...+\dfrac{1}{\left(2n-1\right)a_n^2}< 2\)
Cho \(a_1,a_2,..,a_n\) là các số nguyên dương và n>1.
Đặt \(A=a_1a_2...a_n,\) \(A_i=\dfrac{A}{a_i}\left(i=\overline{1,n}\right)\). CM các đẳng thức sau:
a) \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=A\)
b) \(\left[a_1,a_2,..,a_n\right]\left(A_1,A_2,...,A_n\right)=A\)
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
Chứng minh rằng với mọi số dương \(a_1,a_2,...,a_n\) ta luôn có :
\(a_1^{\dfrac{1}{2}}+a^{\dfrac{2}{3}}_2+...+a_n^{\dfrac{n}{n+1}}\le a_1+a_2+...+a_n+\sqrt{\dfrac{2\left(\pi^2-3\right)}{9}\left(a_1+a_2+...+a_n\right)}\)
Cho \(\left(a_n\right)\) thỏa mãn: \(a_{n+1}=a_n+\dfrac{1}{a_1+a_2+...+a_n}\) \(\left(a_1>0\right)\).
Tính \(lim\dfrac{a_{n+1}}{a_n}\).
Cho n số thực dương \(a_1,a_2,..,a_n\) có tổng bằng 1
Chứng minh rằng \(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)
\(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)
\(\Leftrightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{n}{2n-1}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{2\left(a_1+a_2+...+a_n\right)-\left(a^2_1+a^2_2+...+a_n^2\right)}\)
\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{1}{2-\left(a^2_1+a^2_2+...+a_n^2\right)}\)
Chứng minh rằng \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)
\(\Leftrightarrow2n-1\ge n\left[2-\left(a^2_1+a^2_2+...+a^2_n\right)\right]\)
\(\Leftrightarrow2n-1\ge2n-n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow-1\ge-n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow1\le n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow\dfrac{1}{n}\le a^2_1+a^2_2+...+a^2_n\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow VP=\dfrac{a^2_1}{1}+\dfrac{a^2_2}{1}+...+\dfrac{a^2_n}{1}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}=\dfrac{1}{n}\)
\(\Rightarrow\) đpcm
Vậy \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)
\(\Rightarrow\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\) ( đpcm )
\(Cho\) \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{n-1}}{a_n}=\dfrac{a_n}{a_1}\). Và \(a_1+a_2+...+a_n\ne0;a_1=-\sqrt{5}\). Tính \(a_2;a_3;...a_n=?\)