CMR: Nếu 2 đường thẳng song song thì tia phân giác của các góc đồng vị song song với nhau
Chứng tỏ rằng nếu 2 đường thẳng song song thì các tia phân giác của mỗi cặp góc đồng vị song song với nhau.
Vì a//b
=>2gocs có chứa tia phân giác bằng nhau ( 2 góc so le trong ) (1)
Vì tia này phân giác góc này
=>goc nhỏ này = góc nhỏ kia = 1 nửa góc to (2)
Tia phân giác kia chứng minh tương tự (3)
Từ (1), (2) và (3) => hai góc nhỏ bằng nhau (VD : O^1 = B^1 )
Mà 2 góc này ở vị trí so le trong
=> hai tia phân giác ấy song song với nhau
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Chứng minh rằng nếu 1 đường thẳng cắt 2 đường thẳng song song thì:
a) Các tia phân giác của 2 góc đồng vị song song với nhau.B) Các tia phân giác của 2 góc trong cùng phái vuông góc với nhau.Chứng minh rằng nếu 1 đường thẳng cắt 2 đường thẳng song song thì:
Các tia phân giác của 2 góc đồng vị song song với nhau .Gọi AB và CD là 2 đường thẳng song song,
Đường thẳng EF cắt AB tại M , cắt CD tại N. Xét 2 góc đồng vị EMB và MND với 2 tia phân giác MN và NQ . ta có ; \(\widehat{EMP}=\widehat{\dfrac{EMB}{2};MNQ=\widehat{\dfrac{MND}{2}}}\). Do AB || CD nên EMP=MND (2 góc đồng vị ) ma \(\widehat{EMP}=\widehat{\dfrac{EMB}{2};MNQ=\widehat{\dfrac{MND}{2}}}\) \(\Rightarrow EMP=MNQ\) ( mả 2 góc nay o vi tri đồng vị ) \(\Rightarrow MP\) // NQ \(\Rightarrow\) Các tia phân giác của 2 góc đồng vị song song với nhau .Giả sử đường thẳng d căt 2 đường thẳng song song tại A, B, đường phân giác góc A và B cắt nhau tại M
2 góc trong cùng phía có tổng = 180 độ
=> (MBA + MAB) = 180/2 = 90 độ
=> BMA = 180 - MAB - MBA = 180 - 90 = 90 độ
hay AM vuông góc với BM
Chứng minh rằng nếu 1 đường thẳng cắt 2 đường thẳng song song thì:
Các tia phân giác của 2 góc đồng vị song song với nhau .mk vẽ hơi xấu nha:
Ta có: góc A = góc B (vì 2 góc này ở vị trí đồng vị của y//x).
Vì Az là p/g của góc A nên góc A\(_1\) = góc A\(_2\).
Vì Bt là p/g của góc B nên góc B\(_1\) = góc B\(_2\).
\(\Rightarrow\) góc A\(_2\) = góc B\(_2\) ( hoặc góc A\(_1\) = góc B\(_1\)). Mà 2 góc này ở vị trí đồng vị nên Az//Bt.
Vậy ta có thể KL: nếu 1 đường thẳng cắt 2 đường thẳng song song thì các tia phân giác của 2 góc đồng vị song song với nhau. (đpcm).
tick nha!
Ta có: góc A = góc B (vì 2 góc này ở vị trí đồng vị của y//x).
Vì Az là p/g của góc A nên góc A11 = góc A22.
Vì Bt là p/g của góc B nên góc B11 = góc B22.
⇒⇒ góc A22 = góc B22 ( hoặc góc A11 = góc B11). Mà 2 góc này ở vị trí đồng vị nên Az//Bt.
Vậy ta có thể KL: nếu 1 đường thẳng cắt 2 đường thẳng song song thì các tia phân giác của 2 góc đồng vị song song với nhau. (đpcm).
CMR:
a/ Nếu 1 đường thẳng cắt 2 đường thẳng song song thì tia phân giác của 2 góc đồng vị song song với nhau.
b/ Tia phân giác của 2 góc nhọn xOy và x'Oy' có Ox // Ox', Oy // Oy' song song với nhau
Giúp mk bài này với, mk đang cần gấp
các đường thẳng và góc , được biểu diễn trên hình vẽ :
Kẻ AH ; BK vuông góc với đường thẳng a;b
Xét tam giác vuông ABH có : B2+BAH =900
lại có góc BAH +A4=900(do AH vuông góc với a)
=> góc A4=B2 ; 2 góc này ở vị trí SLT
Ta có góc :A2=A4 ( đối đỉnh ) => góc A2=B2 ; 2 góc này ở vị trí đồng vị
Ta có góc : A2+A1=1800 => chúng bù nhau
+) Từ 1 cặp SLT bằng nhau A4=B2 ta suy ra được các cặp góc SLT ; đồng vị còn lại bằng nhau , trong phía cùng bù nhau
Mình nghĩ thế này , mà nói em mới đúng do mình mới học lớp 6 ò , mình mới coi qua vài bài hình lớp 7 , sai thì thôi nha
CMR:
a/ Nếu 1 đường thẳng cắt 2 đường thẳng song song thì tia phân giác của 2 góc đồng vị song song với nhau.
b/ Tia phân giác của 2 góc nhọn xOy và x'Oy' có Ox // Ox', Oy // Oy' song song với nhau
Giúp mk bài này với, mk đang cần gấp
Chứng tỏ rằng nếu hai đường thẳng song song thì các tia phân giác của mỗi cặp góc đồng vị song song với nhau
- Gỉa sử 2 góc đồng vị đó là a và b có tia phân giác cắt tạo thành các góc a1, a2, b1, b2
Thấy : \(\widehat{a}=\widehat{b}\)
Mà \(\left\{{}\begin{matrix}\widehat{a1}=\widehat{a2}\\\widehat{b1}=\widehat{b2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{a1}=\widehat{b1}\\\widehat{a2}=\widehat{b2}\end{matrix}\right.\)
- Xét 2 đường phân giác có 2 góc a1, b1 hoặc a2, b2 là 2 góc ở vị trí đồng vị và bằng nhau .
=> Hai đường phân giác đó song song với nhau .
Chứng minh rằng nếu một đường thẳng cắt 2 đường thẳng song song thì:
a) Các tia phân giác của hai góc đồng vị song song với nhau;
b) Các tia phân giác của 2 góc trong cùng phía vuông góc với nhau.
C/m; nếu 2 đường thẳng song song bị đường thẳng thứ 3 cắt thì 2 tia phân giác của 2 góc đồng vị song song với nhau
ta có 2 góc đồng vị bằng nhau nên có phân giác của chúng cũng bằng nhau
nên 2 tia phân giác song song với nhau vì cũng có 2 góc đồng vị bằng nhau