Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham trung thanh
Xem chi tiết
Tuyển Trần Thị
13 tháng 11 2017 lúc 13:53

\(b^4+c^4\ge\)\(b^3c+bc^3\) (bn tu cm nhé)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{bc\left(b^2+c^2\right)+a}=\frac{abc}{b^2c^2\left(b^2+c^2\right)+abc}=\frac{1}{b^2c^2\left(b^2+c^2\right)+1}=\)

\(\frac{a^2b^2c^2}{b^2c^2\left(b^2+c^2\right)+a^2b^2c^2}=\frac{a^2b^2c^2}{b^2c^2\left(a^2+b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)

ttu \(T\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) dau = xay ra khi va chi khi a=b=c=1

Trí Tiên亗
9 tháng 8 2020 lúc 8:00

\(\Sigma\frac{a}{c^4+b^4+a}\le\Sigma\frac{a^2}{abc\left(c^2+b^2\right)+a^2}=1\)

Khách vãng lai đã xóa
Trí Tiên亗
9 tháng 8 2020 lúc 8:24

Bài trên quên xử lý dấu = thêm vào nha  ( dấu "=" xảy ra khi và chỉ khi a=b=c=1 )

C2: Áp dụng bất đẳng thức Cosi ta có 

\(\left(b^4+c^4+a\right)\left(1+1+a^3\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\frac{a}{\left(b^4+c^4+a\right)}\le\frac{a\left(a^4+2\right)}{\left(\Sigma a^2\right)^2}\)

Tương tự, rồi cộng lại ta có 

\(T\le\Sigma\frac{a^4+2}{\left(\Sigma a^2\right)^2}=\frac{\Sigma a^4+2a}{\left(\Sigma a^2\right)^2}\)(*)

Mặt khác ta lại có 

\(\Sigma\frac{1}{a^2}\ge\frac{1}{ab}\)

\(\Leftrightarrow\Sigma a^2b^2\ge\Sigma a\)

\(\Leftrightarrow2\Sigma a^2b^2\ge2\Sigma a\)

\(\Leftrightarrow\Sigma a^4+2\Sigma a^2b^2\ge\Sigma a^4+2\Sigma a\)

\(\Leftrightarrow\frac{\Sigma a^4+2a}{\left(\Sigma a^2\right)^2}\le1\)(**)

từ * và ** 

\(\Rightarrow T\le1\)

dấu ''='' xảy ra khi \(a=b=c=1\)

vậy \(MaxT=1\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
soyeon_Tiểubàng giải
Xem chi tiết
Akai Haruma
3 tháng 3 2017 lúc 12:33

Lời giải:
Trước tiên ta đi chứng minh BĐT phụ là:

Với \(a,b>0\) thì \(a^2+b^4\geq ab(a^2+b^2)\)

Cách CM:

BĐT trên tương đương với: \((a-b)^2(a^2+ab+b^2)\geq 0\) (luôn đúng)

Quay trở về bài toán chính: Áp dụng BĐT phụ trên :

\(\Rightarrow \frac{c}{a^4+b^4+c}\leq \frac{c}{ab(a^2+b^2)+c^2ab}=\frac{c}{ab(a^2+b^2+c^2)}=\frac{c^2}{a^2+b^2+c^2}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow T\leq \frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

Trần Thùy
Xem chi tiết
pham trung thanh
20 tháng 11 2018 lúc 9:25

\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:

\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c=1

Trần Thùy
20 tháng 11 2018 lúc 9:35

VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Help me

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Chủ acc bị dính lời nguy...
29 tháng 3 2021 lúc 21:28

Lớn hơn hoặc bằng hay là bằng?

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
29 tháng 3 2021 lúc 21:32

Đinh Chỉ Tịnh ≥

Khách vãng lai đã xóa
Phan Nghĩa
29 tháng 3 2021 lúc 21:36

\(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

tương tự rồi nhân theo vế thôi nhé đệ =))

Khách vãng lai đã xóa
Nguyễn Mai
Xem chi tiết
trần xuân quyến
Xem chi tiết
Lầy Văn Lội
31 tháng 3 2018 lúc 21:09

\(b^4+c^4\ge bc\left(b^2+c^2\right)\)vì \(\left(b-c\right)^2\left(b^2+bc+c^2\right)\ge0\)

\(\Rightarrow T\le\frac{a}{\frac{b^2+c^2}{a}+a}+\frac{b}{\frac{a^2+c^2}{b}+b}+\frac{c}{\frac{a^2+b^2}{c}+c}=1\)

trần xuân quyến
1 tháng 4 2018 lúc 20:38

rõ đi bạn

Lê Nam Hải
Xem chi tiết
nub
8 tháng 7 2020 lúc 16:22

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
8 tháng 7 2020 lúc 21:48

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
lethienduc
Xem chi tiết
zZz Cool Kid_new zZz
30 tháng 6 2020 lúc 23:11

Theo đánh giá bởi Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+a+a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng lại ta được:

\(T\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+2a+2b+2c\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a+b+c\)

Mà \(LHS\ge abc\left(a+b+c\right)=a+b+c\Rightarrow T\le1\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
Sakura Kinomoto
Xem chi tiết
Phan Thanh Tịnh
21 tháng 9 2016 lúc 23:02

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)