Cho hình bình hành ABCD có BC = 2AB. Gọi E, F lần lượt là trung điểm AB, CD. H là giao điểm của BF và AE. Từ H kẻ HM vuông góc với AF (M thuộc AF), O là trung điểm HM. Chứng Minh : AO vuông góc với BM
đề : Cho hình bình hành ABCD có BC = 2AB. Gọi E, F lần lượt là trung điểm AB, CD. H là giao điểm của BF và AE. Từ H kẻ HM vuông góc với AF (M thuộc AF), O là trung điểm HM. Chứng Minh : AO vuông góc với BM.
Cho hình bình hành ABCD có các đường cao AE, AF.( E thuộc DC, F thuộc BC) Gọi M,N lần lượt là trung điểm của EF, AF. Đường thẳng đi qua A vuông góc với EF cắt CM tại H. Đường trung trực của EF cắt AC tại O. Gọi K là giao điểm của HN và AB. CMR 3 điểm K,O,E thẳng hàng.
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )
Cho hình bình hành ABCD có các đường cao AE, AF.( E thuộc DC, F thuộc BC) Gọi M,N lần lượt là trung điểm của EF, AF. Đường thẳng đi qua A vuông góc với EF cắt CM tại H. Đường trung trực của EF cắt AC tại O. Gọi K là giao điểm của HN và AB. CMR 3 điểm K,O,E thẳng hàng.
Thử nhé: Gọi O' là trung điểm của AC.
Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).
Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.
nên O'M là đường trung trực của EF.
Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.
Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM.
Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?
Dễ thấy bốn điểm A,F,C,E cùng thuộc đường tròn đường kính AC
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC
Ta có OM và AH cùng vuông góc với EF nên OM // AH suy ra M là trung điểm CH (Vì O là trung điểm AC)
Do đó tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành
Suy ra HF // CE // AK. Dễ chứng minh \(\Delta\)HNF = \(\Delta\)KNA (g.c.g), suy ra tứ giác AHFK là hình bình hành
Vậy AK = HF = CE, kết hợp với AK // CE, AK vuông góc AE suy ra CKAE là hình chữ nhật
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K,O,E thẳng hàng (đpcm).
Hình bình hành ABCD có AB=2AD. Gọi F,F lần lượt là trung điểm của AB và CD
a) Chứng minh tứ giác AECF là hình bình hành
b) Chứng minh AF vuông góc với DE
c) Gọi M là giao điểm của BF và CE. Chứng minh EF=MN
cho hình bình hành ABCD có AD=2AB,gọi E,F lần lượt là trung điểm của AD và BC gọi M là giao điểm của AF với BE,N là giao điểm của DF với CE
A, chứng minh rằng AF vuông góc BE
B,tìm điều kiện để tứ giác EMFN là hình vuông
Cho tam giác nhọn ABC. KẺ AH vuông góc với BC(Hthuộc BC). Vẽ AE vuông góc với AB và AE=AB(E,C khác phía đối với AB). Vẽ AFvuông góc với AC và AF=AC(F,B khác phía đối với AC). Kẻ EM và FN cùng vuông góc với đường thẳng AH(M,N thuộc AH), EF cắt AH tại I. Chứng minh rằng:
a/EM+BH=HM; FN+CH=HN
b/ I là trung điểm của EF
c) AO vuông góc EF với O là trung điểm BC
d) CE=BF và CE vuông góc BF
Cho hình bình hành ABCD có AB=2AD.Gọi E,F theo thứ tự là trung điểm của AB và CD.
a, Chứng minh: EBFD là hình bình hành.
b,Tứ giác AEFD là hình gì? Vì sao?
c,Chứng minh: AF vuông góc với DE.
d,Gọi M là giao điểm của AF và DE , N là giao điểm của BF và CE. Chứng minh: EF = MN
e,△ABC cần thêm điều kiện gì thì hình chữ nhật PACM là hình vuông?
Vẽ luông hình giúp e với ạ.E cảm ơnn
a: Xét tứ giác EBFD có
EB//FD
EB=FD
Do đó: EBFD là hình bình hành
Bn tự vẽ hình nha
a, Xét tứ giác HMKA có
góc MHA= 90 độ( mh ⊥ AB-gt)
góc MKA = 90 độ( MK⊥ AC - gt)
góc HAK = 90 độ( tam giác ABC ⊥ A-gt)
-> HMKA là hình chữ nhật ( tứ giác có 3 góc vuông)
-> HM song song AK; Hk=MA; HA=MK
ta có
HM song song ak(cmt)
M là trung điểm BC(gt)
-> H là trung điểm BA
-> Bh=HA=1/2 BA
mà HA=MK(cmt)
->BH=MK(1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến(gt)
-> AM=MB=MC
mà MA=HK(cmt)
-> HK=BM(2)
Từ (1) và (2)
-> BMKH là hình bình hành( các cạnh đối bằng nhau là hình bình hành)
Sorry nhe mình ko bít lm câu C
Nếu hai câu trên đúng like cho mình nha >_<
Cho tam giác ABC nhọn, hai đường cao AE, AF cắt nhau tại H. Kẻ Bx và Cy lần lượt vuông góc với AB và AC, Bx cắt Cy tại A. Gọi M là trung điểm của BC
1. Chứng minh AH vuông góc BC và BHCD là hình bình hành
2. Gọi O là trung điểm của AD, chứng minh H, M, D thẳng hàng và AH=2OM
3. Gọi G là trọng tâm của tam giác ABC, chứng minh GH=2GO
Giúp mình nha, thanks ^^
1: Xét ΔABC có BE,CF là các đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
2: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
=>M là trung điểm của HD
Xét ΔDAH có
M,O lần lượt là trung điểm của DH,DA
nên MO là đường trung bình
=>AH=2MO