Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trọng Nguyên
Xem chi tiết
hoang nguyen truong gian...
17 tháng 1 2016 lúc 13:48

n không chia hết cho 3 => n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)

+) n = 3k + 1 => n2 = (3k + 1)2 = 9k2 + 2.3k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1

+) n = 3k + 2 => n2 = (3k + 2)2 = 9k2 + 2.2.3k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1

Vậy n chia 3 dư 1

nguyen tuan hung
Xem chi tiết
Kỉ niệm tuổi thơ
14 tháng 7 2015 lúc 23:00

Ta có:

Vì n không chia hết cho 3 nên: n=(a.3+1) hoặc (a.3+2)

Nếu n=(a.3+1) thì:(a.3+1)2=a.3.a.3+a.3+a.3+1 Vì (a.3.a.3+a.3+a.3)đều chia hết cho 3 nhưng 1:3(dư 1)

Suy ra (a.3+1)2:3(dư 1)

Nếu n=(a.3+2) thì:(a.3+2)2=a.3.a.3+a.3.2+2.a.3+2.2 Vì (a.3.a.3+a.2.3+2.a.3)đều chia hết cho 3 nhưng (2.2):3(dư 1)

Suy ra (a.3+2)2:3(dư 1)

Vậy ĐCCM

Lê Bảo Hồng Phương
Xem chi tiết
Be Chip
4 tháng 11 2015 lúc 6:39

n=7

nha ban 

Nguyễn Bảo Linh
Xem chi tiết
nguyễn thái bình
20 tháng 11 2019 lúc 14:09

Các cụ cho con bỏ câu này

Khách vãng lai đã xóa
lili
20 tháng 11 2019 lúc 14:19

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

Khách vãng lai đã xóa
Nguyễn Phúc Lâm
12 tháng 9 2021 lúc 15:13

khó.......................................qáu

Khách vãng lai đã xóa
Trần Công Mạnh
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
30 tháng 1 2020 lúc 5:30

Ta có : n không chia hết cho 3 

Xét cá trường hợp :

+, n chia 3 dư 1

n=3k+1 => n 2=( 3k+1 ) .( 3k+1 )=9k2+6k+1

+, n chia 3 dư 2

n=3k+2 => n2=(3k+2).(3k+2)=9k2+ 12k+4=(9k2+12k+3)+1 

Vậy n2 chia 3 dư 1 => đpcm

Khách vãng lai đã xóa
Dung Nhi
Xem chi tiết
Nguyễn Tuấn Minh
13 tháng 8 2016 lúc 20:46

Với n=3k+1 thì n2=(3k+1)(3k+1)=9k2+3k+3k+1

Vì 1 chia 3 dư 1 nên n2 chia 3 dư 1 (1)

Với n=3k+2 thì n2(3k+2)(3k+2)=9k2+2.3k+2.3k+4

Vì 4 chia 3 dư 1 nên n2 chia 3 dư 1 (2)

Từ (1) và (2) =>ĐPCM

soyeon_Tiểu bàng giải
13 tháng 8 2016 lúc 20:45

Do n không chia hết cho 3 => n = 3k + 1 hoặc n = 3k + 2 \(\left(k\in N\right)\)

+ Nếu n = 3k = 1 thì n2 = (3k + 1).(3k + 1)

                                  = (3k + 1).3k + (3k + 1)

                                  = 9k2 + 3k + 3k + 1 chia 3 dư 1

+ Nếu n = 3k + 2 thì n2 = (3k + 2).(3k + 2)

                                   = (3k + 2).3k + (3k + 2)

                                   = 9k2 + 6k + 3k + 4 chia 3 dư 1

Vậy n2 luôn chia 3 dư 1 với mọi \(n\in N\); n không chia hết cho 3 (đpcm)

Dung Nhi
13 tháng 8 2016 lúc 20:50

bạn ơi nhưng 1 chia 3 dư 2 mà

CẢM ƠN NHA!!!!!!!

Pham Hoang Anh
Xem chi tiết
Hà Nguyễn
15 tháng 1 2017 lúc 20:58

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

Lương Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 23:34

Câu 2:

n lẻ nên n=2k+1

\(n^2+n+1\)

\(=\left(2k+1\right)^2+2k+1+1\)

\(=4k^2+4k+1+2k+2\)

\(=4k^2+6k+3=2\left(2k^2+3k\right)+3⋮̸2\)

hay \(n^2+n+1⋮̸8\)

Anh Minh
Xem chi tiết
Đinh Tuấn Việt
11 tháng 10 2015 lúc 22:38

Ta có :

A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155