Rút gọn biểu thức
x^2(x+y)+y^2(x+y)+2x^2y+2xy^2
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Rút gọn A= {2xy/x^2-y^2 + x-y/2x+2y } : x+y/2x + y/y-x g
\(A=\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}+\dfrac{y}{y-x}\left(ĐKXĐ:x\ne\pm y\right)\)
\(A=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}\right):\dfrac{x+y}{2x}+\dfrac{y}{y-x}\)
\(=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}+\dfrac{y}{y-x}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}+\dfrac{y}{y-x}\)
\(\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}+\dfrac{y}{y-x}=\dfrac{x}{x-y}+\dfrac{y}{y-x}=\dfrac{x}{x-y}-\dfrac{y}{x-y}=\dfrac{x-y}{x-y}=1\)
Rút gọn rồi tính giá trị của biểu thức:
x^2+2xy+y^2-2x-2y tại x+y=-6
\(x^2+2xy+y^2-2x-2y=\left(x+y\right)^2-2\left(x+y\right)=\left(-6\right)^2-2.\left(-6\right)=\)
Rút gọn biểu thức
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy\right)\)
\(=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)
Rút gọn biểu thức:
A= \(x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(A=\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(A=\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(A=\left(x+y\right).\left(x+y\right)^2\)
\(A=\left(x+y\right)^3\)
B1 rút gọn rồi tính giá trị cảu biểu thức
a) A = ( 2x - 1 ) \(^2\)+ (3 - 2x ) ( 2x + 3 ) tại x = \(\dfrac{1}{4}\)
b) x(x\(^2\)+ y ) - ( x + 2y ) ( x\(^2\)- 2xy + 4y\(^2\)) tại x= 32 , y= -2
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)
rút gọn biểu thức
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(\Leftrightarrow A=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(\Leftrightarrow A=\left(x^2+y^2\right)\left(x+y\right)+2xy\left(x+y\right)\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)\left(x+y\right)\)
\(\Leftrightarrow A=\left(x+y\right)^2\left(x+y\right)\)
\(\Leftrightarrow A=\left(x+y\right)^3\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
Rút gọn và tính giá trị của biểu thức sau: E=(2x-y)(4x^2+2xy+y^2)-(3x+y)^3+(x-2y)^3 tại x=-1; y=2 (Giúp mk vs mk cần gấp)